EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Energy Methods in Continuum Mechanics

Download or read book Energy Methods in Continuum Mechanics written by S.N. Antontsev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop Energy Methods for Free Boundary Problems in Continuum Mechanics, held in Oviedo, Spain, from March 21 to March 23, 1994. It is well known that the conservation laws and the constitutive equations of Continuum Mechanics lead to complicated coupled systems of partial differential equations to which, as a rule, one fails to apply the techniques usually employed in the studies of scalar uncoupled equations such as, for instance, the maximum principle. The study of the qualitative behaviour of solutions of the systems re quires different techniques, among others, the so called, Energy Methods where the properties of some integral of a nonnegative function of one or several unknowns allow one to arrive at important conclusions on the envolved unknowns. This vol ume presents the state of the art in such a technique. A special attention is paid to the class of Free Boundary Problems. The organizers are pleased to thank the European Science Foundation (Pro gram on Mathematical treatment of free boundary problems), the DGICYT (Spain), the FICYT (Principado de Asturias, Spain) and the Universities of Oviedo and Complutense de Madrid for their generous financial support. Finally, we wish to thank Kluwer Academic Publishers for the facilities received for the publication of these Proceedings.

Book Mathematical Methods in Continuum Mechanics of Solids

Download or read book Mathematical Methods in Continuum Mechanics of Solids written by Martin Kružík and published by Springer. This book was released on 2019-03-02 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily focuses on rigorous mathematical formulation and treatment of static problems arising in continuum mechanics of solids at large or small strains, as well as their various evolutionary variants, including thermodynamics. As such, the theory of boundary- or initial-boundary-value problems for linear or quasilinear elliptic, parabolic or hyperbolic partial differential equations is the main underlying mathematical tool, along with the calculus of variations. Modern concepts of these disciplines as weak solutions, polyconvexity, quasiconvexity, nonsimple materials, materials with various rheologies or with internal variables are exploited. This book is accompanied by exercises with solutions, and appendices briefly presenting the basic mathematical concepts and results needed. It serves as an advanced resource and introductory scientific monograph for undergraduate or PhD students in programs such as mathematical modeling, applied mathematics, computational continuum physics and engineering, as well as for professionals working in these fields.

Book Engineering Mechanics 2

Download or read book Engineering Mechanics 2 written by Dietmar Gross and published by Springer. This book was released on 2018-03-12 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second English edition, Mechanics of Materials is the second volume of a three-volume textbook series on Engineering Mechanics. It was written with the intention of presenting to engineering students the basic concepts and principles of mechanics in as simple a form as the subject allows. A second objective of this book is to guide the students in their efforts to solve problems in mechanics in a systematic manner. The simple approach to the theory of mechanics allows for the different educational backgrounds of the students. Another aim of this book is to provide engineering students as well as practising engineers with a basis to help them bridge the gaps between undergraduate studies, advanced courses on mechanics and practical engineering problems. The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The new edition is fully revised and supplemented by additional examples. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Volume 1 deals with Statics and Volume 3 treats Particle Dynamics and Rigid Body Dynamics. Separate books with exercises and well elaborated solutions are available.

Book Classical Continuum Mechanics

Download or read book Classical Continuum Mechanics written by Karan S. Surana and published by CRC Press. This book was released on 2022-01-24 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua. Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics. This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.

Book Variational  Incremental and Energy Methods in Solid Mechanics and Shell Theory

Download or read book Variational Incremental and Energy Methods in Solid Mechanics and Shell Theory written by J. Mason and published by Elsevier. This book was released on 2013-10-22 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies in Applied Mechanics, 4: Variational, Incremental, and Energy Methods in Solid Mechanics and Shell Theory covers the subject of variational, incremental, and energy methods in Solid Mechanics and Shell Theory from a general standpoint, employing general coordinates and tensor notations. The publication first ponders on mathematical preliminaries, kinematics and stress in three-dimensional solid continua, and the first and second laws of thermodynamics. Discussions focus on the principles of virtual displacements and virtual forces, kinematics of rigid body motions, incremental stresses, kinematics of incremental deformation, description of motion, coordinates, reference and deformed states, tensor formulas for surfaces, and differentials and derivatives of operators. The text then elaborates on constitutive material laws, deformation and stress in shells, first law of thermodynamics applied to shells, and constitutive relations and material laws for shells. Concerns cover hyperelastic incremental material relations, material laws for thin elastic shells, incremental theory and stability, reduced and local forms of the first law of thermodynamics, and description of deformation and motion in shells. The book examines elastic stability, finite element models, variational and incremental principles, variational principles of elasticity and shell theory, and constitutive relations and material laws for shells. The publication is a valuable reference for researchers interested in the variational, incremental, and energy methods in solid mechanics and shell theory.

Book Continuum Mechanics Modeling of Material Behavior

Download or read book Continuum Mechanics Modeling of Material Behavior written by Martin H. Sadd and published by Academic Press. This book was released on 2018-03-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries: kinematics of motion and deformation; force and stress measures; and general principles of mass, momentum and energy balance. The book then moves beyond other books by dedicating several chapters to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity. Linear multiple field problems of thermoelasticity, poroelasticity and electoelasticity are also presented. Discussion of nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials are also given. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. - Offers a thorough, concise and organized presentation of continuum mechanics formulation - Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems - Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study - Features extensive use of exercises, providing more material for student engagement and instructor presentation

Book Energy Principles and Variational Methods in Applied Mechanics

Download or read book Energy Principles and Variational Methods in Applied Mechanics written by J. N. Reddy and published by John Wiley & Sons. This book was released on 2017-07-21 with total page 1069 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.

Book Continuum Mechanics and Thermodynamics

Download or read book Continuum Mechanics and Thermodynamics written by Ellad B. Tadmor and published by Cambridge University Press. This book was released on 2012 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treats subjects directly related to nonlinear materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.

Book Fundamentals of Continuum Mechanics

Download or read book Fundamentals of Continuum Mechanics written by John W. Rudnicki and published by John Wiley & Sons. This book was released on 2014-09-22 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering

Book Mathematical Modeling in Continuum Mechanics

Download or read book Mathematical Modeling in Continuum Mechanics written by Roger Temam and published by Cambridge University Press. This book was released on 2005-05-19 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

Book Matrix tensor Methods in Continuum Mechanics

Download or read book Matrix tensor Methods in Continuum Mechanics written by Sidney F. Borg and published by World Scientific. This book was released on 1990 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purposes of the text are: To introduce the engineer to the very important discipline in applied mathematics-tensor methods as well as to show the fundamental unity of the different fields in continuum mechanics-with the unifying material formed by the matrix-tensor theory and to present to the engineer modern engineering problems.

Book Continuum Methods of Physical Modeling

Download or read book Continuum Methods of Physical Modeling written by Kolumban Hutter and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

Book Encyclopedia of Continuum Mechanics

Download or read book Encyclopedia of Continuum Mechanics written by Holm Altenbach and published by Springer. This book was released on 2020-01-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Encyclopedia covers the entire science of continuum mechanics including the mechanics of materials and fluids. The encyclopedia comprises mathematical definitions for continuum mechanical modeling, fundamental physical concepts, mechanical modeling methodology, numerical approaches and many fundamental applications. The modelling and analytical techniques are powerful tools in mechanical civil and areospsace engineering, plus in related fields of plasticity, viscoelasticity and rheology. Tensor-based and reference-frame-independent, continuum mechanics has recently found applications in geophysics and materials.

Book Continuum Mechanics and Plasticity

Download or read book Continuum Mechanics and Plasticity written by Han-Chin Wu and published by CRC Press. This book was released on 2004-12-20 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting

Book Continuum Mechanics for Engineers

Download or read book Continuum Mechanics for Engineers written by G. Thomas Mase and published by CRC Press. This book was released on 2020-05-01 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bestselling textbook in its first three editions, Continuum Mechanics for Engineers, Fourth Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. It provides information that is useful in emerging engineering areas, such as micro-mechanics and biomechanics. Through a mastery of this volume’s contents and additional rigorous finite element training, readers will develop the mechanics foundation necessary to skillfully use modern, advanced design tools. Features: Provides a basic, understandable approach to the concepts, mathematics, and engineering applications of continuum mechanics Updated throughout, and adds a new chapter on plasticity Features an expanded coverage of fluids Includes numerous all new end-of-chapter problems With an abundance of worked examples and chapter problems, it carefully explains necessary mathematics and presents numerous illustrations, giving students and practicing professionals an excellent self-study guide to enhance their skills.

Book An Introduction to Continuum Mechanics

Download or read book An Introduction to Continuum Mechanics written by J. N. Reddy and published by Cambridge University Press. This book was released on 2013-07-29 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.

Book Continuum Mechanics in the Earth Sciences

Download or read book Continuum Mechanics in the Earth Sciences written by William I. Newman and published by Cambridge University Press. This book was released on 2012-03-15 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuum mechanics underlies many geological and geophysical phenomena, from earthquakes and faults to the fluid dynamics of the Earth. This interdisciplinary book provides geoscientists, physicists and applied mathematicians with a class-tested, accessible overview of continuum mechanics. Starting from thermodynamic principles and geometrical insights, the book surveys solid, fluid and gas dynamics. In later review chapters, it explores new aspects of the field emerging from nonlinearity and dynamical complexity and provides a brief introduction to computational modeling. Simple, yet rigorous, derivations are used to review the essential mathematics. The author emphasizes the full three-dimensional geometries of real-world examples, enabling students to apply this in deconstructing solid earth and planet-related problems. Problem sets and worked examples are provided, making this a practical resource for graduate students in geophysics, planetary physics and geology and a beneficial tool for professional scientists seeking a better understanding of the mathematics and physics within Earth sciences.