EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Energy Gain Efficiency in Steam Assisted Gravity Drainage  SAGD

Download or read book Energy Gain Efficiency in Steam Assisted Gravity Drainage SAGD written by Najeeb Alharthy and published by . This book was released on 2010 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A NUMERICAL ANALYSIS OF THE SINGLE WELL STEAM ASSISTED GRAVITY DRAINAGE  SW SAGD  PROCESS

Download or read book A NUMERICAL ANALYSIS OF THE SINGLE WELL STEAM ASSISTED GRAVITY DRAINAGE SW SAGD PROCESS written by and published by . This book was released on 2001 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam assisted gravity drainage (SAGD) is an effective method to produce heavy oil and bitumen which are important energy resources. In a typical SAGD approach, steam is injected into a horizontal well located directly above a horizontal producer helping to displace heated oil. Single-well (SW) SAGD attempts to create a similar process using only one horizontal well. To improve early-time response of SW-SAGD, it is necessary to heat the near-wellbore area to reduce oil viscosity and allow gravity drainage to begin. Ideally heating should occur with minimal circulation or bypassing of steam. We have investigated early-time processes to improve reservoir heating. A numerical simulation study was performed to gauge combinations of cyclic steam injection and steam circulation prior to SAGD in an effort to better understand and improve early-time performance. Results from this study, include cumulative recoveries, temperature distributions, and production rates. It is found that cyclic steaming of the reservoir offers the most favorable option for heating the near-wellbore area to create conditions that improve initial SAGD response. More favorable reservoir conditions such as low viscosity, thick oil zones, and solution gas, improved reservoir response. Under unfavorable conditions, response was limited.

Book Introduction to Energy Systems

Download or read book Introduction to Energy Systems written by Ibrahim Dinçer and published by John Wiley & Sons. This book was released on 2023-08-28 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Energy Systems An in-depth introduction to applications and analysis of energy systems, covering both renewable and traditional types of energy systems In Introduction to Energy Systems, the content is uniquely designed to cover comprehensive descriptions and assessments of all the key types of energy sources, including fossil fuels-based, nuclear, and renewable energy systems, with a special focus on their design, analysis and assessment, technical and operational aspects, and applications. As a comprehensive resource, the work also introduces many topics not typically covered in other energy system textbooks, such as system design and assessment through exergy, environmental impact assessment of energy systems, and life cycle assessment. From a theory standpoint, the book provides context on the importance of energy and the issues related to energy we face in our world today, with close attention paid to key environmental and sustainability issues. Furthermore, the book includes illustrative examples and problems, and case studies. To aid in seamless reader comprehension, helpful questions and problems are included at the end of each chapter. Sample topics covered in Introduction to Energy Systems include: Fundamental concepts and thermodynamic principles, traditional and innovative systems, and detailed applications in renewable energy systems, including solar, wind, geothermal, biomass, hydro, and marine energies Different types of fuels used in energy systems today, discussions of their combustion characteristics with a clear analysis of each one, and analyses and assessments through energy and exergy approaches Industrial ecology and life cycle assessment, with the intention of clearly assessing the environmental impacts of energy systems How to write balance equations for mass, energy, entropy and exergy, calculate the required capacities, and find the energy and exergy efficiencies and/or energetic and exegetics coefficient of performance values Introduction to Energy Systems serves as a valuable learning resource for both undergraduate and graduate students studying courses, such as Introduction to Energy Systems, Energy System Design, Renewable Energy, Energy & Sustainability, and Fundamentals of Renewable Energy.

Book Computer Simulation of Single Well Steam Assisted Gravity Drainage  SW SAGD   SUPRI TR 119

Download or read book Computer Simulation of Single Well Steam Assisted Gravity Drainage SW SAGD SUPRI TR 119 written by and published by . This book was released on 1999 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam assisted gravity drainage (SAGD) is an effective method of producing heavy oil and bitumen. In a typical SAGD approach, steam is injected into a horizontal well located directly above a horizontal producer. A steam chamber grows around the injection well and helps displace heated oil toward the production well. Single-well (SW) SAGD attempts to create a similar process using only one horizontal well. This may include steam injection from the toe of the horizontal well with production at the heel. Obvious advantages of SW-SAGD include cost savings and utility in relatively thin reservoirs. However, the process is technically challenging. To improve early-time response of SW-SAGD, it is necessary to heat the near-wellbore area to reduce oil viscosity and allow gravity drainage to take place. Ideally heating should occur with minimal circulation or bypassing of stream. Since project economics are sensitive to early production response, we are interested in optimizing the start -up procedure.

Book Integrated Energy Systems for Multigeneration

Download or read book Integrated Energy Systems for Multigeneration written by Ibrahim Dincer and published by Elsevier. This book was released on 2019-09-13 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Energy Systems for Multigeneration looks at how measures implemented to limit greenhouse gas emissions must consider smart utilization of available limited resources and employ renewable resources through integrated energy systems and the utilization of waste energy streams. This reference considers the main concepts of thermal and conventional energy systems through detailed systems description, analyses of methodologies, performance assessment and optimization, and illustrative examples and case studies. The book examines producing power and heat with cooling, freshwater, green fuels and other useful commodities designed to tackle rising greenhouse gas emissions in the atmosphere. With worldwide energy demand increasing, and the consequences of meeting supply with current dependency on fossil fuels, investigating and developing sustainable alternatives to the conventional energy systems is a growing concern for global stakeholders. - Analyzes the links between clean energy technologies and achieving sustainable development - Illustrates several examples of design and analysis of integrated energy systems - Discusses performance assessment and optimization - Uses illustrative examples and global case studies to explain methodologies and concepts

Book A Numerical Analysis of the Single well Steam Assisted Gravity Drainage  SW SAGD  Process

Download or read book A Numerical Analysis of the Single well Steam Assisted Gravity Drainage SW SAGD Process written by K. T. Elliot and published by . This book was released on 2001 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Improved Modeling of the Steam assisted Gravity Drainage  SAGD  Process

Download or read book Improved Modeling of the Steam assisted Gravity Drainage SAGD Process written by Prince Nnamdi Azom and published by . This book was released on 2013 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Steam-Assisted Gravity Drainage (SAGD) Process involves the injection of steam through a horizontal well and the production of heavy oil through a lower horizontal well. Several authors have tried to model this process using analytical, semi-analytical and fully numerical means. In this dissertation, we improve the predictive ability of previous models by accounting for the effect of anisotropy, the effect of heat transfer on capillarity and the effect of water-in-oil (W/O) emulsion formation and transport which serves to enhance heat transfer during SAGD. We account for the effect of anisotropy during SAGD by performing elliptical transformation of the resultant gravity head and resultant oil drainage vectors on to a space described by the vertical and horizontal permeabilities. Our results, show that unlike for the isotropic case, the effect of anisotropy is time dependent and there exists a given time beyond which it ceases to have any effect on SAGD rates. This result will impact well spacing design and optimization during SAGD. Butler et al. (1981) derived their classical SAGD model by solving a 1-D heat conservation equation for single phase flow. This model has excellent predictive capability at experimental scales but performs poorly at field scales. By assuming a linear saturation -- temperature relationship, Sharma and Gates (2010b) developed a model that accounts for multiphase flow ahead of the steam chamber interface. In this work, by decomposing capillary pressure into its saturation and temperature components, we coupled the mass and energy conservation equations and showed that the multi-scale, multiphase flow phenomenon occurring during SAGD is the classical Marangoni (or thermo-capillary) effect which can be characterized by the Marangoni number. At low Marangoni numbers (typical of experimental scales) we get the Butler solution while at high Marangoni numbers (typical of field scales), we approximate the Sharma and Gates solution. The Marangoni flow concept was extended to the Expanding Solvent SAGD (ES-SAGD) process and our results show that there exists a given Marangoni number threshold below which the ES-SAGD process will not fare better than the SAGD process. Experimental results presented in Sasaki et al. (2002) demonstrate the existence of water-in-oil emulsions adjacent to the steam chamber wall during SAGD. In this work we show that these emulsions enhanced heat transfer at the chamber wall and hence oil recovery. We postulate that these W/O emulsions are principally hot water droplets that carry convective heat energy. We perform calculations to show that their presence can practically double the effective heat transfer coefficient across the steam chamber interface which overcomes the effect of reduced oil rates due to the increased emulsified phase viscosity. Our results also compared well with published experimental data. The SAGD (and ES-SAGD) process is a short length-scaled process and hence, short length-scaled phenomena (typically ignored in other EOR or conventional processes) such as thermo-capillarity and in-situ emulsification should not be ignored in predicting SAGD recoveries. This work will find unique application in predictive models used as fast proxies for predicting SAGD recovery and for history matching purposes.

Book Analysis of Energy Systems

Download or read book Analysis of Energy Systems written by Vincenzo Bianco and published by CRC Press. This book was released on 2017-05-12 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of energy systems is of paramount importance in modern societies, since it is fundamental to guarantee a sustainable economic development. It combines technical and economic research with a specific focus on quantitative modelling, in order to optimize the modalities of energy demand and supply globally. The book covers major advanced topics related to the analysis of energy by considering different aspects, namely management, planning and policies. The most recent trends, such as smart grids, transition from fossil fuels to renewables based energy systems and distributed generation, are also discussed in this book. Intended to be a collection of various contributions from experts all around the world, it includes latest research results, innovations and methodologies about the analysis of energy systems. The book also focuses to contribute to the current debate related to the evolution of energy systems, by discussing in an open way the pro’s and con’s without any pre-constitute point of view. Title is aimed to be a reference for the academic community, students and professionals with a wider interdisciplinary background. Key Features: Presents integration of renewable sources with conventional energy systems. Topic is addressed from a multidisciplinary point of view, i.e. economy, technical, modelling, planning. Investigates management and planning aspects of future energy supplies. Multidimensional nature of energy systems is highlighted and discussed. Contributes towards implementing policy measures to reduce primary energy consumptions and carbon footprint.

Book America s Energy Future

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2010-01-15
  • ISBN : 0309116023
  • Pages : 736 pages

Download or read book America s Energy Future written by National Research Council and published by National Academies Press. This book was released on 2010-01-15 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: For multi-user PDF licensing, please contact customer service. Energy touches our lives in countless ways and its costs are felt when we fill up at the gas pump, pay our home heating bills, and keep businesses both large and small running. There are long-term costs as well: to the environment, as natural resources are depleted and pollution contributes to global climate change, and to national security and independence, as many of the world's current energy sources are increasingly concentrated in geopolitically unstable regions. The country's challenge is to develop an energy portfolio that addresses these concerns while still providing sufficient, affordable energy reserves for the nation. The United States has enormous resources to put behind solutions to this energy challenge; the dilemma is to identify which solutions are the right ones. Before deciding which energy technologies to develop, and on what timeline, we need to understand them better. America's Energy Future analyzes the potential of a wide range of technologies for generation, distribution, and conservation of energy. This book considers technologies to increase energy efficiency, coal-fired power generation, nuclear power, renewable energy, oil and natural gas, and alternative transportation fuels. It offers a detailed assessment of the associated impacts and projected costs of implementing each technology and categorizes them into three time frames for implementation.

Book Steam Assisted Gravity Drainage  SAGD  Process

Download or read book Steam Assisted Gravity Drainage SAGD Process written by Faisal F. Khan and published by . This book was released on 2013 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report details the theory and the importance of the steam chamber in a Steam Assisted Gravity Drainage (SAGD) process. An accurate understanding of the steam chamber is critical in determining the oil recovery from a heavy oil reservoir.

Book High Pressure Oxy fired  HiPrOx  Direct Contact Steam Generation  DCSG  for Steam Assisted Gravity Drainage  SAGD  Application

Download or read book High Pressure Oxy fired HiPrOx Direct Contact Steam Generation DCSG for Steam Assisted Gravity Drainage SAGD Application written by Paul-Emanuel Cairns and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Production in Canada's oil sands has been increasing, with a projected rate of 4.5 million barrels per day by 2025. Two production techniques are currently used, mining and in-situ, with the latter projected to constitute 5̃7% of all production by that time. Although in-situ extraction methods such as Steam Assisted Gravity Drainage (SAGD) are less invasive than mining, they result in more greenhouse gas (GHG) emissions per barrel and require large amounts of water that must be treated and recycled with a make-up water requirement of about 10%. CanmetENERGY is developing a steam generation technology called the High Pressure Oxy-fired Direct Contact Steam Generator (HiPrOx/DCSG, or DCSG for short) that will reduce these water requirements and sequester GHGs. This study evaluates the technical feasibility of this technology using process simulations, bench-scale testing, and pilot-scale testing. At first, a method in which to integrate the DCSG into the SAGD process was presented and process modeling of expected system performance was undertaken. The process simulations indicated that DCSG decreased the energy intensity of SAGD by up to 7.6% compared to the base SAGD case without carbon capture and storage (CCS), and up to 12.0% compared to the base SAGD case with CCS. Bench-scale testing was then performed using a pressurized thermogravimetric analyzer (PTGA) in order to investigate the effects of increased pressure and high moisture environments on a Canadian lignite coal char's reactivity. It was found that under reaction kinetic-controlled conditions at atmospheric pressure, the increased addition of steam led to a reduction in burning time. The findings may have resulted from the lower heat capacity and higher thermal conductivity of steam compared to CO2. At increased pressures, CO2 inhibited burnout due to its higher heat capacity, lower thermal conductivity, and its effect on C(O) concentrations on the particle surface. When steam was added, the inhibiting effects of CO2 were counteracted, resulting in burnout rates similar to pressurized O2/N2 environments. These preliminary results suggested that the technology was feasible at a bench-scale level. Conflicting literature between bench-scale and pilot-scale studies indicated that pilot-scale testing would be advantageous as a next step. At the pilot-scale, testing was performed using n-butanol, graphite slurry, and n-butanol/graphite slurry mixtures covering lower and upper ends in fuel reactivity. It was found that stable combustion was attainable, with high conversion efficiencies in all cases. With the n-butanol, it was possible to achieve low excess oxygen requirements, which minimizes corrosion issues and reduce energy requirements associated with oxygen generation. With graphite slurry, it was found that it was possible to sustain combustion in these high moisture environments and that high conversion was achieved as indicated by the undetectable levels of carbonaceous materials observed in downstream equipment. Overall, these studies indicate that DCSG is technically feasible from the perspectives of energy and combustion efficiencies as well as from a steam generation point of view. Future work includes the investigation of possible corrosion associated with the product gas, the effect of CO2 on bitumen production, the nature of the mineral melt formed by the deposition of the dissolved and suspended solids from the water in the combustor, and possible scaling issues in the steam generator and piping associated with mineral deposits from the dissolved and suspended solids in the produced water is recommended.

Book Computer Simulation of Single well Steam Assisted Gravity Drainage  SW SAGD

Download or read book Computer Simulation of Single well Steam Assisted Gravity Drainage SW SAGD written by Keith T. Elliot and published by . This book was released on 1999 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Steam Assisted Gravity Drainage Model Incorporating Energy Recovery from a Cooling Steam Chamber  microform

Download or read book Steam Assisted Gravity Drainage Model Incorporating Energy Recovery from a Cooling Steam Chamber microform written by F. R. Scott Ferguson and published by National Library of Canada. This book was released on 1986 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Improved Upscaling Scheme for Steam Assisted Gravity Drainage  SAGD  and Semi Analytical Modeling of the SAGD Rising Phase

Download or read book Improved Upscaling Scheme for Steam Assisted Gravity Drainage SAGD and Semi Analytical Modeling of the SAGD Rising Phase written by Mayuri Murugesu and published by . This book was released on 2015 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steam assisted gravity drainage (SAGD) process commonly applied for heavy oil and bitumen recovery consists of two production phases: a steam rising phase and a spreading phase. Extensive research has been done on modeling the SAGD spreading phase, but fewer analytical/semi-analytical models exist for the unstable rising phase. This thesis presents a semi-analytical method, MS-SAGD, to model the SAGD rising phase. In addition, an improved upscaling technique that takes into account the unique flow geometry observed during SAGD is presented that enables more accurate predictions of oil recovery rates in heterogeneous reservoirs during both phases. The MS-SAGD semi analytical method, based on the Myhill and Stegemeier frontal advance model for steam drive processes, tracks the growth of the steam chamber as a function of time. Two different oil production rate models are proposed and the comparison of results from flow and transport simulations is presented. Model 1 is similar to Butler's approach using the rising steam finger theory. Model 2 is obtained by modifying Butler's spreading phase model and applying it to the rising phase. Both models use the outputs of the MS-SAGD model to estimate the oil production rates during the SAGD rising phase. The application of the MS-SAGD model is extended to heterogeneous reservoirs by treating the heated volume estimated by the original MS-SAGD model as an effective heated volume. In addition, the homogeneous permeability in the proposed oil production rate model is replaced with an upscaled effective permeability that is a function of time. The improved upscaling technique is based on a global approach that minimizes the differences between the fine scale and upscaled model pressure solutions. Sources and sinks by means of wells are used in the upscaling to simulate the convergent flow pattern observed during the SAGD process. The proposed models outperform existing analytical/semi-analytical methods and are in good agreement with the results obtained from CMG-STARSTM reservoir simulation. Both oil production rate models perform comparatively well, producing similar results in terms of cumulative oil production. However, Model 2 performs better than Model 1 in describing the overall behavior of the oil production observed in the reservoir simulation and is thus a better model for the SAGD rising phase.

Book Encyclopedia of Renewable Energy  Sustainability and the Environment

Download or read book Encyclopedia of Renewable Energy Sustainability and the Environment written by and published by Elsevier. This book was released on 2024-08-09 with total page 4061 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy