EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Energy and Water Recovery with Transport Membrane Condenser

Download or read book Energy and Water Recovery with Transport Membrane Condenser written by Dexin Wang and published by . This book was released on 2013 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

Download or read book Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO2 in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Book Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

Download or read book Advanced Energy and Water Recovery Technology from Low Grade Waste Heat written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Book Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

Download or read book Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

Book Handbook of Membrane Separations

Download or read book Handbook of Membrane Separations written by Anil K. Pabby and published by CRC Press. This book was released on 2023-12-22 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of the Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications provides a comprehensive discussion of membrane applications. Fully updated to include the latest advancements in membrane science and technology, it is a one-of-its-kind overview of the existing literature. This fully illustrated handbook is written by experts and professionals in membrane applications from around the world. Key Features: Includes entirely new chapters on organic solvent-resistant nanofiltration, membrane condensers, membrane-reactors in hydrogen production, membrane materials for haemodialysis, and integrated membrane distillation Covers the full spectrum of membrane technology and its advancements Explores membrane applications in a range of fields, from biotechnological and food processing to industrial waste management and environmental engineering This book will appeal to both newcomers to membrane science as well as engineers and scientists looking to expand their knowledge on upcoming advancements in the field.

Book Thermal Energy

Download or read book Thermal Energy written by Yatish T. Shah and published by CRC Press. This book was released on 2018-01-12 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

Book Energy Management Handbook

Download or read book Energy Management Handbook written by Stephan A. Roosa and published by CRC Press. This book was released on 2020-12-17 with total page 893 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive handbook is recognized as the definitive stand-alone energy manager’s desk reference, used by tens of thousands of professionals throughout the energy management industry. This new ninth edition includes new chapters on energy management controls systems, compressed air systems, renewable energy, and carbon reduction. There are major updates to chapters on energy auditing, lighting systems, boilers and fired systems, steam and condensate systems, green buildings waste heat recovery, indoor air quality, utility rates, natural gas purchasing, commissioning, financing and performance contracting and much more with numerous new and updated illustrations, charts, calculation procedures and other helpful working aids.

Book Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

Download or read book Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO2 containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Book Comprehensive Membrane Science and Engineering

Download or read book Comprehensive Membrane Science and Engineering written by Enrico Drioli and published by Elsevier. This book was released on 2017-07-20 with total page 1709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Membrane Science and Engineering, Second Edition, Four Volume Set is an interdisciplinary and innovative reference work on membrane science and technology. Written by leading researchers and industry professionals from a range of backgrounds, chapters elaborate on recent and future developments in the field of membrane science and explore how the field has advanced since the previous edition published in 2010. Chapters are written by academics and practitioners across a variety of fields, including chemistry, chemical engineering, material science, physics, biology and food science. Each volume covers a wide spectrum of applications and advanced technologies, such as new membrane materials (e.g. thermally rearranged polymers, polymers of intrinsic microporosity and new hydrophobic fluoropolymer) and processes (e.g. reverse electrodialysis, membrane contractors, membrane crystallization, membrane condenser, membrane dryers and membrane emulsifiers) that have only recently proved their full potential for industrial application. This work covers the latest advances in membrane science, linking fundamental research with real-life practical applications using specially selected case studies of medium and large-scale membrane operations to demonstrate successes and failures with a look to future developments in the field. Contains comprehensive, cutting-edge coverage, helping readers understand the latest theory Offers readers a variety of perspectives on how membrane science and engineering research can be best applied in practice across a range of industries Provides the theory behind the limits, advantages, future developments and failure expectations of local membrane operations in emerging countries

Book Handbook of Energy Engineering

Download or read book Handbook of Energy Engineering written by D. Paul Mehta and published by CRC Press. This book was released on 2021-09-15 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: With new chapters on electrical system optimization and ISO 50001, this edition also covers the latest updates to codes and standards in the energy industry. Also included are chapters on energy economic analysis, energy auditing, waste heat recovery, utility system optimization, HVAC, cogeneration, control systems, energy management, compressed air system optimization and financing energy projects. Additional topics include emerging technologies such as oxy-fuel combustion, high efficiency burners, enhanced heat exchangers, and ceramic membranes for heat recovery as well as information on how to do an energy analysis of any system; electrical system optimization; state-of-the-art lighting and lighting controls. This reference will guide you step by step in applying the principles of energy engineering and management to the design of electrical, HVAC, utility, process and building systems for both new design and retrofit projects. The text is thoroughly illustrated with tables, graphs, diagrams and sample problems.

Book Membranes for Industrial Wastewater Recovery and Re use

Download or read book Membranes for Industrial Wastewater Recovery and Re use written by S. Judd and published by Elsevier. This book was released on 2003-04-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a world in which legislation promotes the recycling of wastewater new technologies are emerging that can fulfil such a remit. The papers that comprise this volume explore those technologies and explain what is driving and what is preventing their widespread implementation.

Book Hollow Fiber Membrane Contactors

Download or read book Hollow Fiber Membrane Contactors written by Anil K. Pabby and published by CRC Press. This book was released on 2020-11-23 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on hollow fiber contractors presents an up-to-date compilation of the latest developments and milestones in this membrane technology. Hollow Fiber Membrane Contactors: Module Fabrication, Design and Operation, and Potential Applications provides a comprehensive discussion of hollow fiber membrane applications (including a few case studies) in biotechnology, chemical, food, and nuclear engineering. The chapters in this book have been classified using the following, based on different ways of contacting fluids with each other: Gas-liquid contacting; Liquid-liquid contacting; Supported liquid membrane; Supported gas membrane; Fluid-fluid contacting. Other features include: Discusses using non-dispersive solvent extraction, hollow fiber strip dispersion, hollow fiber supported liquid membranes and role of process intensification in integrated use of these processes Provides technical and economic perspectives with several case studies related to specific scenarios Demonstrates module fabrication, design, operation and maintenance of hollow fiber contactors for different applications and performance Presents discussion on newer concepts like membrane emulsification, membrane nanoprecipitation, membrane crystallization and membrane condenser Special focus on emerging areas such as the use of hollow fiber contactor in back end of nuclear fuel cycle, membrane distillation, dehumidification of air and gas absorption and stripping Discusses theoretical analysis including computational modeling of different hollow fiber membrane processes, and presents emphasis on newly developed area of hollow fiber membrane based analytical techniques Presents discussion on upcoming area dealing with hollow fiber contactors-based technology in fermentation and enzymatic transformation and in chiral separations This book is equally suited for newcomers to the field, as well as for engineers and scientists that have basic knowledge in this field but are interested in obtaining more information about specific future applications.

Book Membrane Engineering

Download or read book Membrane Engineering written by Enrico Drioli and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).

Book The Natural Gas Research  Development  and Demonstration Program

Download or read book The Natural Gas Research Development and Demonstration Program written by Steve Williams and published by . This book was released on 2009 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Green Membrane Technology Towards Environmental Sustainability

Download or read book Green Membrane Technology Towards Environmental Sustainability written by Ludovic Francis Dumee and published by Elsevier. This book was released on 2023-08-11 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Green Membrane Technology Towards Environmental Sustainability covers experimental and theoretical aspects of greener membranes and processes. The book fills the gap in current literature and offers a platform that introduces and discusses new routes in fabricating green membranes and processes for developing green membranes. Although membranes and membrane processes have decades of history, rapid development in membranes manufacturing and emerging membrane driven markets is requiring new and more sustainable engagement of manufacturers, membrane operators and scientists. This book is written for chemical and polymer engineers, materials scientists, professors, graduate students, as well as general readers at universities, research institutions and R&D departments in industries who are engaged in sustainable engineering and practical strategies in circular economy. Provides a broad reference base on a wide range of information on greener technologies and new generation membranes Details experimental and theoretical aspects of the greener membranes and processes Dedicated exclusively to greener routes for fabricating sustainable membranes in separation and delivery applications

Book Membrane Engineering

Download or read book Membrane Engineering written by Enrico Drioli and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).

Book Current Trends and Future Developments on  Bio   Membranes

Download or read book Current Trends and Future Developments on Bio Membranes written by Angelo Basile and published by Elsevier. This book was released on 2024-01-15 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current Trends and Future Developments on (Bio-) Membranes: Engineering with Membranes discusses various aspects of membrane engineering. This includes, but is not limited to, the role of membranes in food production, treatment and recovery, their applications in electrochemical processes and devices, in drug delivery and in ionic materials, such as salts, acids and bases, recovery. In addition, this book approaches the above topics in a different angle than the existing publications, i.e., reviews technical difficulties, environmental challenges and economic analysis. Membranes are one of the technologies which can affect various aspects of engineering dealing with feeds and products. Membranes demonstrate selective purifying properties, hence, membranes can help in the removal of various pollutants onsite and without the need of adding extra units and apparatuses. Besides that, membranes help reactions shift forward and make the whole process more efficient. Describes the role of membrane in food production, treatment and purification Discusses the membrane applications in electronic processes and electrochemical devices Covers membranes in drug delivery systems and drug industries Reviews membranes in ionic materials recovery, such as salts, acids and bases