EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book NMR Crystallography

    Book Details:
  • Author : Robin K. Harris
  • Publisher : John Wiley & Sons
  • Release : 2009-12-21
  • ISBN : 0470699612
  • Pages : 523 pages

Download or read book NMR Crystallography written by Robin K. Harris and published by John Wiley & Sons. This book was released on 2009-12-21 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. The term "NMR Crystallography" has only recently come into common usage, and even now causes raised eyebrows within some parts of the diffraction community. The power of solid-state NMR to give crystallographic information has considerably increased since the CPMAS suite of techniques was introduced in 1976. In the first years of the 21st century, the ability of NMR to provide information to support and facilitate the analysis of single-crystal and powder diffraction patterns has become widely accepted. Indeed, NMR can now be used to refine diffraction results and, in favorable cases, to solve crystal structures with minimal (or even no) diffraction data. The increasing ability to relate chemical shifts (including the tensor components) to the crystallographic location of relevant atoms in the unit cell via computational methods has added significantly to the practice of NMR crystallography. Diffraction experts will increasingly welcome NMR as an allied technique in their structural analyses. Indeed, it may be that in the future crystal structures will be determined by simultaneously fitting diffraction patterns and NMR spectra. This Handbook is organised into six sections. The first contains an overview and some articles on fundamental NMR topics, followed by a section concentrating on chemical shifts, and one on coupling interactions. The fourth section contains articles describing how NMR results relate to fundamental crystallography concepts and to diffraction methods. The fifth section concerns specific aspects of structure, such as hydrogen bonding. Finally, four articles in the sixth section give applications of NMR crystallography to structural biology, organic & pharmaceutical chemistry, inorganic & materials chemistry, and geochemistry. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here

Book Solid State NMR

    Book Details:
  • Author : Klaus Müller
  • Publisher : John Wiley & Sons
  • Release : 2021-08-23
  • ISBN : 352731816X
  • Pages : 562 pages

Download or read book Solid State NMR written by Klaus Müller and published by John Wiley & Sons. This book was released on 2021-08-23 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid State NMR A thorough and comprehensive textbook covering the theoretical background, experimental approaches, and major applications of solid-state NMR spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful non-destructive technique capable of providing information about the molecular structure and dynamics of molecules. Alongside solution-state NMR, a well-established technique to study chemical structures and investigate physico-chemical properties of molecules in solutions, solid-state NMR (SSNMR) offers many exciting possibilities for the analysis of solid and soft materials across scientific fields. SSNMR shows unique capabilities for a detailed investigation of structural and dynamic properties of materials over wide space and time ranges. For this reason, and thanks to significant advances in the past several years, the application of SSNMR to materials is rapidly increasing in disciplines such as chemistry, physics, and materials and life sciences. Solid State NMR: Principles, Methods, and Applications offers a systematic introduction to the theory, methodological concepts, and major experimental methods of SSMR spectroscopy. Exploring the unique potential of SSNMR for the structural and dynamic characterization of soft and either amorphous or crystalline solid materials, this comprehensive textbook provides foundational knowledge and recent developments of SSNMR, covering physical and theoretical background, experimental methods, and applications to pharmaceuticals, polymers, inorganic and hybrid materials, liquid crystals, and model membranes. Written by two expert authors to ensure a clear and consistent presentation of the subject, this textbook: Includes a brief introduction to the historical aspects and broad theoretical background of solid-state NMR spectroscopy Provides helpful illustrations to explain the various SSNMR concepts and methods Features accessible descriptive text with self-consistent use of quantum mechanics Covers the experimental aspects of SSNMR spectroscopy and in particular a description of many useful pulse sequences Contains references to relevant literature Solid State NMR: Principles, Methods, and Applications is the ideal textbook for university courses on SSNMR, advanced spectroscopies, and a valuable single-volume reference for spectroscopists, chemists, and researchers in the field of materials.

Book Protein NMR Spectroscopy

Download or read book Protein NMR Spectroscopy written by John Cavanagh and published by Elsevier. This book was released on 2010-07-21 with total page 915 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein NMR Spectroscopy, Second Edition combines a comprehensive theoretical treatment of NMR spectroscopy with an extensive exposition of the experimental techniques applicable to proteins and other biological macromolecules in solution. Beginning with simple theoretical models and experimental techniques, the book develops the complete repertoire of theoretical principles and experimental techniques necessary for understanding and implementing the most sophisticated NMR experiments. Important new techniques and applications of NMR spectroscopy have emerged since the first edition of this extremely successful book was published in 1996. This updated version includes new sections describing measurement and use of residual dipolar coupling constants for structure determination, TROSY and deuterium labeling for application to large macromolecules, and experimental techniques for characterizing conformational dynamics. In addition, the treatments of instrumentation and signal acquisition, field gradients, multidimensional spectroscopy, and structure calculation are updated and enhanced. The book is written as a graduate-level textbook and will be of interest to biochemists, chemists, biophysicists, and structural biologists who utilize NMR spectroscopy or wish to understand the latest developments in this field. - Provides an understanding of the theoretical principles important for biological NMR spectroscopy - Demonstrates how to implement, optimize and troubleshoot modern multi-dimensional NMR experiments - Allows for the capability of designing effective experimental protocols for investigations of protein structures and dynamics - Includes a comprehensive set of example NMR spectra of ubiquitin provides a reference for validation of experimental methods

Book NMR Spectroscopy of Polymers

Download or read book NMR Spectroscopy of Polymers written by Tatsuki Kitayama and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the authors ́ extensive experimental experience, NMR Spectroscopy of Polymers explains the practical use of NMR spectroscopy in polymer chemistry.

Book One dimensional and Two dimensional NMR Spectra by Modern Pulse Techniques

Download or read book One dimensional and Two dimensional NMR Spectra by Modern Pulse Techniques written by Kōji Nakanishi and published by University Science Books. This book was released on 1990 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectroscopy for Materials Characterization

Download or read book Spectroscopy for Materials Characterization written by Simonpietro Agnello and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.

Book Safety and Biological Effects in MRI

Download or read book Safety and Biological Effects in MRI written by Devashish Shrivastava and published by John Wiley & Sons. This book was released on 2020-11-17 with total page 986 pages. Available in PDF, EPUB and Kindle. Book excerpt: In vivo magnetic resonance imaging (MRI) has evolved into a versatile and critical, if not ‘gold standard’, imaging tool with applications ranging from the physical sciences to the clinical ‘-ology’. In addition, there is a vast amount of accumulated but unpublished inside knowledge on what is needed to perform a safe, in vivo MRI. The goal of this comprehensive text, written by an outstanding group of world experts, is to present information about the effect of the MRI environment on the human body, and tools and methods to quantify such effects. By presenting such information all in one place, the expectation is that this book will help everyone interested in the Safety and Biological Effects in MRI find relevant information relatively quickly and know where we stand as a community. The information is expected to improve patient safety in the MR scanners of today, and facilitate developing faster, more powerful, yet safer MR scanners of tomorrow. This book is arranged in three sections. The first, named ‘Static and Gradient Fields’ (Chapters 1-9), presents the effects of static magnetic field and the gradients of magnetic field, in time and space, on the human body. The second section, named ‘Radiofrequency Fields’ (Chapters 10-30), presents ways to quantify radiofrequency (RF) field induced heating in patients undergoing MRI. The effect of the three fields of MRI environment (i.e. Static Magnetic Field, Time-varying Gradient Magnetic Field, and RF Field) on medical devices, that may be carried into the environment with patients, is also included. Finally, the third section, named ‘Engineering’ (chapters 31-35), presents the basic background engineering information regarding the equipment (i.e. superconducting magnets, gradient coils, and RF coils) that produce the Static Magnetic Field, Time-varying Gradient Magnetic Field, and RF Field. The book is intended for undergraduate and post-graduate students, engineers, physicists, biologists, clinicians, MR technologists, other healthcare professionals, and everyone else who might be interested in looking into the role of MRI environment on patient safety, as well as those just wishing to update their knowledge of the state of MRI safety. Those, who are learning about MRI or training in magnetic resonance in medicine, will find the book a useful compendium of the current state of the art of the field.

Book NMR of Quadrupolar Nuclei in Solid Materials

Download or read book NMR of Quadrupolar Nuclei in Solid Materials written by Roderick E. Wasylishen and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: NMR OF QUADRUPOLAR NUCLEI IN SOLID MATERIALS Over the past 20 years technical developments in superconducting magnet technology and instrumentation have increased the potential of NMR spectroscopy so that it is now possible to study a wide range of solid materials. In addition, one can probe the nuclear environments of many other additional atoms that possess the property of spin. In particular, it is possible to carry out NMR experiments on isotopes that have nuclear spin greater that 1⁄2 (i.e. quadrupolar nuclei). Since more that two-thirds of all NMR active isotopes are quadrupolar nuclei, applications of NMR spectroscopy with quadrupolar nuclei are increasing rapidly. The purpose of this handbook is to provide under a single cover the fundamental principles, techniques and applications of quadrupolar NMR as it pertains to solid materials. Each chapter has been prepared by an expert who has made significant contributions to out understanding and appreciation of the importance of NMR studies of quadrupolar nuclei in solids. The text is divided into three sections: The first provides the reader with the background necessary to appreciate the challenges in acquiring and interpreting NMR spectra of quadrupolar neclei in solids. The second presents cutting-edge techniques and methodology for employing these techniques to investigate quadrupolar nuclei in solids. The final section explores applications of solid-state NMR studies of solids ranging from investigations of dynamics, characterizations of biological samples, organic and inorganic materials, porous materials, glasses, catalysts, semiconductors and high-temperature superconductors. About EMR Handbooks The Encyclopedia of Magnetic Resonance (EMR) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence-of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of Encyclopedia articles. In consultation with the EMR Editorial Board, the EMR Handbooks are coherently planned in advance by specially-selected Editors, and new articles, are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of the Encyclopedia of Magnetic Resonance at your fingertips! Visit: www.wileyonlinelibrary.com/ref/emr

Book Solid State NMR Studies of Biopolymers

Download or read book Solid State NMR Studies of Biopolymers written by Anne E. McDermott and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. The field of solid state NMR of biological samples [ssNMR] has blossomed in the past 5-10 years, and a cohesive overview of the technology is needed for new practitioners in industry and academia. This title provides an overview of Solid State NMR methods for studying structure dynamics and ligand-binding in biopolymers, and offers an overview of RF pulse sequences for various applications, including not only a systematic catalog but also a discussion of theoretical tools for analysis of pulse sequences. Practical examples of biochemical applications are included, along with a detailed discussion of the many aspects of sample preparation and handling that make spectroscopy on solid proteins successful. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here

Book NMR Studies of Translational Motion

Download or read book NMR Studies of Translational Motion written by William S. Price and published by Cambridge University Press. This book was released on 2009-07-30 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview of NMR theory and applications in fluid systems, fully referenced for research use.

Book NMR in Pharmaceutical Science

Download or read book NMR in Pharmaceutical Science written by Jeremy R. Everett and published by John Wiley & Sons. This book was released on 2015-09-28 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: NMR in Pharmaceutical Sciences is intended to be a comprehensive source of information for the many individuals that utilize MR in studies of relevance to the pharmaceutical sector. The book is intended to educate and inform those who develop and apply MR approaches within the wider pharmaceutical environment, emphasizing the toolbox that is available to spectroscopists and radiologists. This book is structured on the key processes in drug discovery, development and manufacture, but underpinned by an understanding of fundamental NMR principles and the unique contribution that NMR (including MRI) can provide. After an introductory chapter, which constitutes an overview, the content is organised into five sections. The first section is on the basics of NMR theory and relevant experimental methods. The rest follow a sequence based on the chronology of drug discovery and development, firstly 'Idea to Lead' then 'Lead to Drug Candidate', followed by 'Clinical Development', and finally 'Drug Manufacture'. The thirty one chapters cover a vast range of topics from analytical chemistry, including aspects involved in regulatory matters and in the prevention of fraud, to clinical imaging studies. Whilst this comprehensive volume will be essential reading for many scientists based in pharmaceutical and related industries, it should also be of considerable value to a much wider range of academic scientists whose research is related to the various aspects of pharmaceutical R&D; for them it will supply vital understanding of pharmaceutical industrial concerns and the basis of key decision making processes. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes

Book NMR Spectroscopy Explained

Download or read book NMR Spectroscopy Explained written by Neil E. Jacobsen and published by John Wiley & Sons. This book was released on 2007-08-27 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: NMR Spectroscopy Explained : Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology provides a fresh, practical guide to NMR for both students and practitioners, in a clearly written and non-mathematical format. It gives the reader an intermediate level theoretical basis for understanding laboratory applications, developing concepts gradually within the context of examples and useful experiments. Introduces students to modern NMR as applied to analysis of organic compounds. Presents material in a clear, conversational style that is appealing to students. Contains comprehensive coverage of how NMR experiments actually work. Combines basic ideas with practical implementation of the spectrometer. Provides an intermediate level theoretical basis for understanding laboratory experiments. Develops concepts gradually within the context of examples and useful experiments. Introduces the product operator formalism after introducing the simpler (but limited) vector model.

Book NMR Data Processing

    Book Details:
  • Author : Jeffrey C. Hoch
  • Publisher : Wiley-Liss
  • Release : 1996-10-05
  • ISBN : 9780471039006
  • Pages : 230 pages

Download or read book NMR Data Processing written by Jeffrey C. Hoch and published by Wiley-Liss. This book was released on 1996-10-05 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: NMR DATA PROCESSING Jeffrey C. Hoch and Alan S. Stern Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful nondestructive technique for exploring the structure of matter. In recent years, NMR instrumentation has become increasingly sophisticated, and the software used to acquire and process NMR data continues to expand in scope and complexity. This software has always been difficult to understand, and, until now, it seemed likely to remain that way. NMR Data Processing examines and explains the techniques used to process, present, and analyze NMR data. It provides a complete account of the fundamentals of spectrum analysis and establishes a framework for applying those fundamentals to real NMR data. It also details, in clear and concise language, the basic principles underlying the complex software needed to analyze the data. Two chapters are devoted to the fundamentals and applications of discrete Fourier transform (DFT) in NMR, which was crucial to the development of modern NMR spectroscopy. A large part of the book focuses on increasingly important non-DFT methods, which obtain higher sensitivity and resolution. Other topics covered include: * Data formats * Processing for multidimensional experiments * Parametric modeling of NMR signals * Standard techniques-apodization, zero-filling, the Hilbert transform * Artifacts-aliasing, leakage, solvent signals * Advanced processing techniques-LP, MaxEnt, Bayesian analysis Jeffrey C. Hoch and Alan S. Stern conclude their in-depth look at this rapidly growing field by exploring methods for analyzing processed data, including visualization, quantification, and error analysis. Readers are provided with a solid foundation for developing new methods of their own. NMR Data Processing is an important tool for students learning basic principles for the first time, technicians troubleshooting data processing problems, and professional researchers developing new techniques. It will help all NMR users acquire a true grasp of the methods behind the process, avoid the pitfalls of misapplication and misinterpretation, and exploit the full power of NMR software.

Book NMR in Organometallic Chemistry

Download or read book NMR in Organometallic Chemistry written by Paul S. Pregosin and published by John Wiley & Sons. This book was released on 2013-07-26 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first and ultimate guide for anyone working in transition organometallic chemistry and related fields, providing the background and practical guidance on how to efficiently work with routine research problems in NMR. The book adopts a problem-solving approach with many examples taken from recent literature to show readers how to interpret the data. Perfect for PhD students, postdocs and other newcomers in organometallic and inorganic chemistry, as well as for organic chemists involved in transition metal catalysis.

Book 200 and More NMR Experiments

Download or read book 200 and More NMR Experiments written by Stefan Berger and published by John Wiley & Sons. This book was released on 2004-07-02 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work-book will guide you safely, in step-by-step descriptions, through every detail of the NMR experiments within, beginning with 1D routine experiments and ending with a series of advanced 3D experiments on a protein: ? Which experiment can best yield the desired information? ? How must the chosen experiment be performed? ? How does one read the required information from the spectrum? ? How does this particular pulse sequence work? ? Which other experiments give similar information? This third edition of the book, following its two highly successful predecessors, has been revised and expanded to 206 experiments. They are organized in 15 chapters, covering test procedures and routine spectra, variable temperature measurements, the use of auxiliary reagents, 1D multipulse experiments, spectra of heteronuclides, and the application of selective pulses. The second and third dimensions are introduced using pulsed field gradients, and experiments on solid state materials are described. A key part describes 3D experiments on the protein ubiquitin with 76 amino acids. What is new in this third edition? 1. 24 new experiments have been inserted into the 14 chapters that were in the 2nd edition, e.g., alpha/beta-SELINCOR-TOCSY, WET, DOSY, ct-COSY, HMSC, HSQC with adiabatic pulses, HETLOC. J-resolved HMBC, (1,1)- and (1,n)-ADEQUATE, STD, REDOR, and HR-MAS. 2. 20 new protein NMR experiments have been specially devised and are collected in the newly added Chapter 15, ProteinNMR, for which one needs a special model sample: fully 13C- and 15N-labeled human ubiquitin. Techniques used include the constant time principle, the PEP method, filters, gradient selection, and the echo/anti-echo procedure. The guide has been written by experts in this field, following the principle of learning by doing: all the experiments have been specially performed for this book, exactly as described and shown in the spectra that are reproduced. Being a reference source and work-book for the NMR laboratory as well as a textbook, it is a must for every scientist working with NMR, as well as for students preparing for their laboratory courses

Book Experimental Approaches of NMR Spectroscopy

Download or read book Experimental Approaches of NMR Spectroscopy written by The Nuclear Magnetic Resonance Society of Japan and published by Springer. This book was released on 2017-11-23 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.

Book High Resolution NMR

    Book Details:
  • Author : Edwin D. Becker
  • Publisher : Elsevier
  • Release : 1999-10-08
  • ISBN : 0080508065
  • Pages : 441 pages

Download or read book High Resolution NMR written by Edwin D. Becker and published by Elsevier. This book was released on 1999-10-08 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. Likewise, no previous background in NMR is assumed, since the book begins with a description of the basic physics, together with a brief account of the historical development of the field. This third edition of High Resolution NMR preserves the "conversational" approach of the previous editions that has been well accepted as a teaching tool. However, more than half the material is new, and the remainder has been revised extensively. Problems are included to reinforce concepts in the book. - Uses mathematics to augment, not replace, verbal explanations - Written in a clear and conversational style - Follows the successful format and approach of two previous editions - Revised and updated extensively--about 70 percent of the text is new - Includes problems and references to additional reading at the end of each chapter