EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Enabling Techniques for Low Power  High Performance Fractional N Frequency Synthesizers

Download or read book Enabling Techniques for Low Power High Performance Fractional N Frequency Synthesizers written by Ashok Swaminathan and published by . This book was released on 2006 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delta-sigma fractional-N phase-locked loops are used to generate high quality radio-frequency signals for use in wireless applications. To reduce the phase noise inherent to these systems, a digital-to-analog converter is used to cancel the error introduced by the fractional division process, however matching between the digital-to-analog converter and the phase-locked loop circuitry place a limit on the amount of phase noise reduction that can be achieved. Furthermore, circuit non-linearity results in the appearance of spurious tones in the phase-locked loop output. This dissertation outlines a calibration technique, and a digital quantization technique that provide solutions to these two problems. The calibration technique results in improved phase noise performance by adjusting the digital-to-analog converter gain, and thus providing better matching between the phase-locked loop circuitry and digital-to-analog converter. The digital quantization technique results in no spurious tones when specified non-linearity is applied to the quantizer output sequence and error. The calibration technique was implemented in an integrated circuit, which achieves state-of-the-art performance when compared to currently published phase-locked loops and allows for all circuitry to be integrated onto a single chip. Chapter 1 presents the calibration technique, as well as a theoretical analysis of the stability. Chapter 2 presents details on the digital quantization technique, and a mathematical proof of the absence of spurious tones. In chapter 3, results from an implemented circuit are presented, which verify the behaviour of the technique presented in chapter 1.

Book Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission

Download or read book Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission written by Nereo Markulic and published by Springer. This book was released on 2019-01-30 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains concepts behind fractional subsampling-based frequency synthesis that is re-shaping today’s art in the field of low-noise LO generation. It covers advanced material, giving clear guidance for development of background-calibrated environments capable of spur-free synthesis and wideband phase modulation. It further expands the concepts into the field of subsampling polar transmission, where the newly developed architecture enables unprecedented spectral efficiency levels, unquestionably required by the upcoming generation of wireless standards.

Book All Digital Frequency Synthesizer in Deep Submicron CMOS

Download or read book All Digital Frequency Synthesizer in Deep Submicron CMOS written by Robert Bogdan Staszewski and published by John Wiley & Sons. This book was released on 2006-09-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

Book CMOS Single Chip Fast Frequency Hopping Synthesizers for Wireless Multi Gigahertz Applications

Download or read book CMOS Single Chip Fast Frequency Hopping Synthesizers for Wireless Multi Gigahertz Applications written by Taoufik Bourdi and published by Springer Science & Business Media. This book was released on 2007-03-14 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the authors outline detailed design methodology for fast frequency hopping synthesizers for RF and wireless communications applications. There is great emphasis on fractional-N delta-sigma based phase locked loops from specifications, system analysis and architecture planning to circuit design and silicon implementation. The developed techniques in the book can help in designing very low noise, high speed fractional-N frequency synthesizers.

Book CMOS Fractional N Synthesizers

Download or read book CMOS Fractional N Synthesizers written by Bram De Muer and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: CMOS Fractional-N Synthesizers starts with a comprehensive introduction to general frequency synthesis. Different architectures and synthesizer building blocks are discussed with their relative importance on synthesizer specifications. The process of synthesizer specification derivation is illustrated with the DCS-1800 standard as a general test case. The book tackles the design of fractional-N synthesizers in CMOS on circuit level as well as system level. The circuit level focuses on high-speed prescaler design up to 12 GHz in CMOS and on fully integrated, low-phase-noise LC-VCO design. High-Q inductor integration and simulation in CMOS is elaborated and flicker noise minimization techniques are presented, ranging from bias point choice to noise filtering techniques. On a higher level, a systematic design strategy has been developed that trades off all noise contributions and fast dynamics for integrated capacitance (area). Moreover, a theoretical DeltaSigma phase noise analysis is presented, extended with a fast non-linear analysis method to accurately predict the influence of PLL non-linearities on the spectral purity of the DeltaSigma fractional-N frequency synthesizers.

Book Architectures for RF Frequency Synthesizers

Download or read book Architectures for RF Frequency Synthesizers written by Cicero S. Vaucher and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text describes a conceptual framework for analyzing the performance of PLL frequency synthesizers, and presents optimization procedures for the different performance aspects. It contains basic information and in-depth knowledge, widely illustrated with practical design examples used in industrial products.

Book A Low power CMOS Fractional N Frequency Synthesizer

Download or read book A Low power CMOS Fractional N Frequency Synthesizer written by Kasra Ardalan and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frequency synthesizers find wide applications in different communication systems. The demand for higher performance and speed from one side, and lower power consumption and cost from another side, makes the synthesizer's design a challenging task. In this thesis, a very low power integrated circuit fractional-N frequency synthesizer was designed which employs a $\Delta\Sigma$ modulator in its architecture to digitally control the output frequency and also to shape the noise of the dual modulus divider. The target application for this design is clock recovery in digital communication receivers in which the timing information is obtained in digital domain (such as baud-rate timing recovery method). This information has to be applied to a digitally-controlled frequency synthesizer which generates pulses to sample the incoming data for extracting the information. The center frequency of VCO is around 315 MHz which makes the system suitable for high speed applications (622Mb/s in case of 4-PAM modulation scheme). The chip is fabricated in a CMOS 0.35$\mu$ process and consumes only 8.5 mW power using a single 3.3 V power supply.

Book Microwave and Wireless Synthesizers

Download or read book Microwave and Wireless Synthesizers written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2021-04-27 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students.

Book Advances in Analog and RF IC Design for Wireless Communication Systems

Download or read book Advances in Analog and RF IC Design for Wireless Communication Systems written by Michael H. Perrott and published by Elsevier Inc. Chapters. This book was released on 2013-05-13 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-to-digital converter (TDC) circuits are a key component for achieving high-performance digital phase-locked loops (PLLs) which offer lower area and greater flexibility than their analog PLL counterparts. This chapter focuses on a recently developed TDC architecture known as the gated ring oscillator (GRO) which offers first-order shaping of its quantization noise and delay stage mismatch. To provide context for the GRO discussion, background on general TDC implementation techniques is described along with key performance issues related to digital frequency synthesizers. The GRO concept is then presented, followed by implementation details and measured results. Finally, recent variations on the GRO concept are described such as a MASH TDC structure which achieves higher-order noise shaping and a switched ring oscillator (SRO) TDC which improves robustness to dead zones encountered by the GRO TDC.

Book Selected Topics in Power  RF  and Mixed Signal ICs

Download or read book Selected Topics in Power RF and Mixed Signal ICs written by Yan Lu and published by CRC Press. This book was released on 2022-09-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by advanced CMOS technology, power management units, RF transceivers, and sensors, analog and mixed-signal circuits can now be fully integrated with VLSI digital systems for applications ranging from mobile, internet-of-things (IoT), wearable, and implantable medical devices. Evidently, the circuit- and system-level innovations have pushed the device performance boundaries to become orders of magnitude higher, whilst keeping the same or even lower power consumption.Selected Topic in Power, RF, and Mixed-Signal ICs provides a practical overview and state-of-the-art advancements on several selected topics in the areas of power, RF, and mixed-signal integrated circuits and systems.Topics covered in the book include:• Very-High-Frequency DC-DC Switching Converters• Analog and Digital Low-Dropout Regulators• Analog and Digital Sub-Sampling Frequency Synthesizers• Hybrid ADC Architecture with Digital Assisted Techniques• CMOS Image Sensors and Their Biomedical Applications• CMOS Temperature Sensors• CMOS Millimeter-Wave Power Amplifiers• Zigbee/BLE Transmitter for IoT Applications

Book Techniques for High performance Digital Frequency Synthesis and Phase Control

Download or read book Techniques for High performance Digital Frequency Synthesis and Phase Control written by Chun-Ming Hsu (Ph. D.) and published by . This book was released on 2008 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a 3.6-GHz, 500-kHz bandwidth digital [delta][sigma] frequency synthesizer architecture that leverages a recently invented noise-shaping time-to-digital converter (TDC) and an all-digital quantization noise cancellation technique to achieve excellent in-band and out-of-band phase noise, respectively. In addition, a passive digital-to-analog converter (DAC) structure is proposed as an efficient interface between the digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to create a digitally-controlled oscillator (DCO). An asynchronous divider structure is presented which lowers the required TDC range and avoids the divide-value-dependent delay variation. The prototype is implemented in a 0.13-am CMOS process and its active area occupies 0.95 mm2. Operating under 1.5 V, the core parts, excluding the VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz). In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-[mu]m CMOS for chip-tochip communications is presented. By leveraging the fractional-N synthesizer technique, this architecture provides a digitally-controlled delay adjustment with a fine resolution and infinite range. The provided delay resolution is less sensitive to the process, voltage, and temperature variations than conventional techniques. A new [delta][sigma] modulator enables a compact and low-power implementation of this architecture. A simple bang-bang detector is used for phase detection. The prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.

Book Digital Frequency Synthesis Demystified

Download or read book Digital Frequency Synthesis Demystified written by Bar-Giora Goldberg and published by Newnes. This book was released on 1999 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface; Introduction to frequency synthesis; Frequency synthesizer system analysis; Measurement techniques; DDS general architecture; Phase-locked loop synthesizers; Accumulators; Lockup table and sine rom compression; Digital to analog converters; Synthesizers in use and reference generators; Index.

Book High Performance AD and DA Converters  IC Design in Scaled Technologies  and Time Domain Signal Processing

Download or read book High Performance AD and DA Converters IC Design in Scaled Technologies and Time Domain Signal Processing written by Pieter Harpe and published by Springer. This book was released on 2014-07-23 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Book PLL Modulation and Mixed Signal Calibration Techniques for FMCW Radar

Download or read book PLL Modulation and Mixed Signal Calibration Techniques for FMCW Radar written by Pratap Tumkur Renukaswamy and published by Springer Nature. This book was released on with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integrated RF CMOS Frequency Synthesizers and Oscillators for Wireless Applications

Download or read book Integrated RF CMOS Frequency Synthesizers and Oscillators for Wireless Applications written by Adem Aktas and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: PLL (Phase-Locked Loop) frequency synthesizers are used in wireless transceivers for frequency conversion. Recent directions in PLL frequency synthesizer research and development are to fully integrate PLL synthesizers in CMOS technology, to improve phase noise performance, and to operate wide range of frequency bands and channel bandwidths. Fully integration of synthesizers in CMOS technology is desired for low cost, low power consumption and small size in mobile wireless terminals. Low phase noise is required by digital modulation techniques which have been used in new mobile standards for the efficient use of the frequency spectrum. Operation over a wide range of frequency bands and channel bandwidths are required to support migration and backward compatibility in the wireless standard evolution. This work investigates the PLL frequency synthesizer design and implementation in CMOS technology with focus on integration of wideband VCOs (Voltage-Controlled Oscillators). Phase noise of a PLL synthesizer is a major design parameter. A PLL noise model is developed for noise optimization purposes. Wideband RF VCO design with sub-bands is investigated. Frequency planning, synthesizer architecture and technology considerations are also explored for wideband VCO design. Band switching techniques VCO tuning range presented. Active VCO circuit topologies and resonator design are also presented. The PLL frequency synthesizers are designed and implemented for a multi-band/standard(IEEE 802.11a/b/g) WLAN radio in 0.18um CMOS. Phase noise trade-offs for PLL design are explored in this application. Development and design of a wideband VCO for this application is also presented. An auto calibration circuit is developed for VCO tuning band selection. Another application of the wideband PLL frequency synthesizer is designed and implemented for a fully integrated dual-mode frequency synthesizer for GSM and WCDMA standards in 0.5um CMOS. A hybrid integer-N/fractional-N architecture is developed to meet the multi-standard requirements. Design and implementation of high performance RF VCO depends on the RF models of the devices. RF CMOS characterization and modeling techniques are explored. Microwave wafer measurement and calibration techniques are also investigated for CMOS technology.

Book Design Techniques for High Performance Integrated Frequency Synthesizers for Multi standard Wireless Communication Applications

Download or read book Design Techniques for High Performance Integrated Frequency Synthesizers for Multi standard Wireless Communication Applications written by Li Lin and published by . This book was released on 2000 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: