Download or read book Empirical Likelihood and Quantile Methods for Time Series written by Yan Liu and published by Springer. This book was released on 2018-12-05 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models.
Download or read book Empirical Likelihood Method in Survival Analysis written by Mai Zhou and published by CRC Press. This book was released on 2015-06-17 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empirical Likelihood Method in Survival Analysis explains how to use the empirical likelihood method for right censored survival data. The author uses R for calculating empirical likelihood and includes many worked out examples with the associated R code. The datasets and code are available for download on his website and CRAN. The book focuses on all the standard survival analysis topics treated with empirical likelihood, including hazard functions, cumulative distribution functions, analysis of the Cox model, and computation of empirical likelihood for censored data. It also covers semi-parametric accelerated failure time models, the optimality of confidence regions derived from empirical likelihood or plug-in empirical likelihood ratio tests, and several empirical likelihood confidence band results. While survival analysis is a classic area of statistical study, the empirical likelihood methodology has only recently been developed. Until now, just one book was available on empirical likelihood and most statistical software did not include empirical likelihood procedures. Addressing this shortfall, this book provides the functions to calculate the empirical likelihood ratio in survival analysis as well as functions related to the empirical likelihood analysis of the Cox regression model and other hazard regression models.
Download or read book Empirical Likelihood written by Art B. Owen and published by CRC Press. This book was released on 2001-05-18 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al
Download or read book Contemporary Multivariate Analysis and Design of Experiments written by Kaitai Fang and published by World Scientific. This book was released on 2005 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Index. Subject index -- Author index
Download or read book Robust Diagnostic Regression Analysis written by Anthony Atkinson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs are used to understand the relationship between a regression model and the data to which it is fitted. The authors develop new, highly informative graphs for the analysis of regression data and for the detection of model inadequacies. As well as illustrating new procedures, the authors develop the theory of the models used, particularly for generalized linear models. The book provides statisticians and scientists with a new set of tools for data analysis. Software to produce the plots is available on the authors website.
Download or read book Research Papers in Statistical Inference for Time Series and Related Models written by Yan Liu and published by Springer Nature. This book was released on 2023-05-31 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles theoretical developments on statistical inference for time series and related models in honor of Masanobu Taniguchi's 70th birthday. It covers models such as long-range dependence models, nonlinear conditionally heteroscedastic time series, locally stationary processes, integer-valued time series, Lévy Processes, complex-valued time series, categorical time series, exclusive topic models, and copula models. Many cutting-edge methods such as empirical likelihood methods, quantile regression, portmanteau tests, rank-based inference, change-point detection, testing for the goodness-of-fit, higher-order asymptotic expansion, minimum contrast estimation, optimal transportation, and topological methods are proposed, considered, or applied to complex data based on the statistical inference for stochastic processes. The performances of these methods are illustrated by a variety of data analyses. This collection of original papers provides the reader with comprehensive and state-of-the-art theoretical works on time series and related models. It contains deep and profound treatments of the asymptotic theory of statistical inference. In addition, many specialized methodologies based on the asymptotic theory are presented in a simple way for a wide variety of statistical models. This Festschrift finds its core audiences in statistics, signal processing, and econometrics.
Download or read book Empirical Likelihood Methods in Biomedicine and Health written by Albert Vexler and published by CRC Press. This book was released on 2018-09-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empirical Likelihood Methods in Biomedicine and Health provides a compendium of nonparametric likelihood statistical techniques in the perspective of health research applications. It includes detailed descriptions of the theoretical underpinnings of recently developed empirical likelihood-based methods. The emphasis throughout is on the application of the methods to the health sciences, with worked examples using real data. Provides a systematic overview of novel empirical likelihood techniques. Presents a good balance of theory, methods, and applications. Features detailed worked examples to illustrate the application of the methods. Includes R code for implementation. The book material is attractive and easily understandable to scientists who are new to the research area and may attract statisticians interested in learning more about advanced nonparametric topics including various modern empirical likelihood methods. The book can be used by graduate students majoring in biostatistics, or in a related field, particularly for those who are interested in nonparametric methods with direct applications in Biomedicine.
Download or read book Diagnostic Methods in Time Series written by Fumiya Akashi and published by Springer Nature. This book was released on 2021-06-08 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains new aspects of model diagnostics in time series analysis, including variable selection problems and higher-order asymptotics of tests. This is the first book to cover systematic approaches and widely applicable results for nonstandard models including infinite variance processes. The book begins by introducing a unified view of a portmanteau-type test based on a likelihood ratio test, useful to test general parametric hypotheses inherent in statistical models. The conditions for the limit distribution of portmanteau-type tests to be asymptotically pivotal are given under general settings, and very clear implications for the relationships between the parameter of interest and the nuisance parameter are elucidated in terms of Fisher-information matrices. A robust testing procedure against heavy-tailed time series models is also constructed in the context of variable selection problems. The setting is very reasonable in the context of financial data analysis and econometrics, and the result is applicable to causality tests of heavy-tailed time series models. In the last two sections, Bartlett-type adjustments for a class of test statistics are discussed when the parameter of interest is on the boundary of the parameter space. A nonlinear adjustment procedure is proposed for a broad range of test statistics including the likelihood ratio, Wald and score statistics.
Download or read book The New Palgrave Dictionary of Economics written by and published by Springer. This book was released on 2016-05-18 with total page 7493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Download or read book Inference for Heavy Tailed Data written by Liang Peng and published by Academic Press. This book was released on 2017-08-11 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques. - Contains comprehensive coverage of new techniques of heavy tailed data analysis - Provides examples of heavy tailed data and its uses - Brings together, in a single place, a clear picture on learning and using these techniques
Download or read book State Space Methods for Time Series Analysis written by Jose Casals and published by CRC Press. This book was released on 2018-09-03 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.
Download or read book Long Range Dependent Processes Theory and Applications written by Ming Li and published by Frontiers Media SA. This book was released on 2022-12-05 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modeling Financial Time Series with S PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2007-10-10 with total page 998 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. It is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This edition covers S+FinMetrics 2.0 and includes new chapters.
Download or read book Mathematical and Statistical Methods for Actuarial Sciences and Finance written by Cira Perna and published by Springer. This book was released on 2014-07-08 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume aims to collect new ideas presented in the form of 4 page papers dedicated to mathematical and statistical methods in actuarial sciences and finance. The cooperation between mathematicians and statisticians working in insurance and finance is a very fruitful field and provides interesting scientific products in theoretical models and practical applications, as well as in scientific discussion of problems of national and international interest. This work reflects the results discussed at the biennial conference on Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF), born at the University of Salerno in 2004.
Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Download or read book Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates written by Jeffrey R. Wilson and published by Springer Nature. This book was released on 2020-09-28 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a concise point of research topics and reference for modeling correlated response data with time-dependent covariates, and longitudinal data for the analysis of population-averaged models, highlighting methods by a variety of pioneering scholars. While the models presented in the volume are applied to health and health-related data, they can be used to analyze any kind of data that contain covariates that change over time. The included data are analyzed with the use of both R and SAS, and the data and computing programs are provided to readers so that they can replicate and implement covered methods. It is an excellent resource for scholars of both computational and methodological statistics and biostatistics, particularly in the applied areas of health.
Download or read book Handbook of Discrete Valued Time Series written by Richard A. Davis and published by CRC Press. This book was released on 2016-01-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca