Download or read book Embedding Problems in Symplectic Geometry written by Felix Schlenk and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.
Download or read book Complex and Symplectic Geometry written by Daniele Angella and published by Springer. This book was released on 2017-10-12 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Download or read book Symplectic Geometry written by Helmut Hofer and published by Springer Nature. This book was released on 2022-12-05 with total page 1158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
Download or read book Topological Persistence in Geometry and Analysis written by Leonid Polterovich and published by American Mathematical Soc.. This book was released on 2020-05-11 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.
Download or read book Dynamics Ergodic Theory and Geometry written by Boris Hasselblatt and published by Cambridge University Press. This book was released on 2007-09-24 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the subjects from the Clay Mathematics Institute/Mathematical Sciences Research Institute Workshop titled 'Recent Progress in Dynamics' in September and October 2004, this volume contains surveys and research articles by leading experts in several areas of dynamical systems that have experienced substantial progress. One of the major surveys is on symplectic geometry, which is closely related to classical mechanics and an exciting addition to modern geometry. The survey on local rigidity of group actions gives a broad and up-to-date account of another flourishing subject. Other papers cover hyperbolic, parabolic, and symbolic dynamics as well as ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this book fascinating. The book also includes a fifty-page commented problem list that takes the reader beyond the areas covered by the surveys, to inspire and guide further research.
Download or read book The Restricted Three Body Problem and Holomorphic Curves written by Urs Frauenfelder and published by Springer. This book was released on 2018-08-29 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Download or read book Geometric and Topological Methods for Quantum Field Theory written by Alexander Cardona and published by Cambridge University Press. This book was released on 2013-05-09 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique presentation of modern geometric methods in quantum field theory for researchers and graduate students in mathematics and physics.
Download or read book What s Next written by Dylan Thurston and published by Princeton University Press. This book was released on 2020-07-07 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Thurston (1946–2012) was one of the great mathematicians of the twentieth century. He was a visionary whose extraordinary ideas revolutionized a broad range of areas of mathematics, from foliations, contact structures, and Teichmüller theory to automorphisms of surfaces, hyperbolic geometry, geometrization of 3-manifolds, geometric group theory, and rational maps. In addition, he discovered connections between disciplines that led to astonishing breakthroughs in mathematical understanding as well as the creation of entirely new fields. His far-reaching questions and conjectures led to enormous progress by other researchers. In What's Next?, many of today's leading mathematicians describe recent advances and future directions inspired by Thurston's transformative ideas. This book brings together papers delivered by his colleagues and former students at "What's Next? The Mathematical Legacy of Bill Thurston," a conference held in June 2014 at Cornell University. It discusses Thurston's fundamental contributions to topology, geometry, and dynamical systems and includes many deep and original contributions to the field. Incisive and wide-ranging, the book explores how he introduced new ways of thinking about and doing mathematics—innovations that have had a profound and lasting impact on the mathematical community as a whole—and also features two papers based on Thurston's unfinished work in dynamics.
Download or read book Lectures on Lagrangian Torus Fibrations written by Jonny Evans and published by Cambridge University Press. This book was released on 2023-07-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symington's almost toric fibrations have played a central role in symplectic geometry over the past decade, from Vianna's discovery of exotic Lagrangian tori to recent work on Fibonacci staircases. Four-dimensional spaces are of relevance in Hamiltonian dynamics, algebraic geometry, and mathematical string theory, and these fibrations encode the geometry of a symplectic 4-manifold in a simple 2-dimensional diagram. This text is a guide to interpreting these diagrams, aimed at graduate students and researchers in geometry and topology. First the theory is developed, and then studied in many examples, including fillings of lens spaces, resolutions of cusp singularities, non-toric blow-ups, and Vianna tori. In addition to the many examples, students will appreciate the exercises with full solutions throughout the text. The appendices explore select topics in more depth, including tropical Lagrangians and Markov triples, with a final appendix listing open problems. Prerequisites include familiarity with algebraic topology and differential geometry.
Download or read book Index theory in nonlinear analysis written by Chungen Liu and published by Springer. This book was released on 2019-05-22 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides detailed information on index theories and their applications, especially Maslov-type index theories and their iteration theories for non-periodic solutions of Hamiltonian systems. It focuses on two index theories: L-index theory (index theory for Lagrangian boundary conditions) and P-index theory (index theory for P-boundary conditions). In addition, the book introduces readers to recent advances in the study of index theories for symmetric periodic solutions of nonlinear Hamiltonian systems, and for selected boundary value problems involving partial differential equations.
Download or read book Introduction to Symplectic Topology written by Dusa McDuff and published by Oxford University Press. This book was released on 2017 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. This new third edition of a classic book in the feild includes updates and new material to bring the material right up-to-date.
Download or read book Emergence Of The Quantum From The Classical Mathematical Aspects Of Quantum Processes written by Maurice A De Gosson and published by World Scientific. This book was released on 2017-11-10 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emergence of quantum mechanics from classical world mechanics is now a well-established theme in mathematical physics. This book demonstrates that quantum mechanics can indeed be viewed as a refinement of Hamiltonian mechanics, and builds on the work of George Mackey in relation to their mathematical foundations. Additionally when looking at the differences with classical mechanics, quantum mechanics crucially depends on the value of Planck's constant h. Recent cosmological observations tend to indicate that not only the fine structure constant α but also h might have varied in both time and space since the Big Bang. We explore the mathematical and physical consequences of a variation of h; surprisingly we see that a decrease of h leads to transitions from the quantum to the classical.Emergence of the Quantum from the Classical provides help to undergraduate and graduate students of mathematics, physics and quantum theory looking to advance into research in the field.
Download or read book Stability Analysis of Impulsive Functional Differential Equations written by Ivanka Stamova and published by Walter de Gruyter. This book was released on 2009-10-16 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equations is under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied researches and practitioners.
Download or read book Products of Finite Groups written by Adolfo Ballester-Bolinches and published by Walter de Gruyter. This book was released on 2010-10-19 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of finite groups factorised as a product of two or more subgroups has become a subject of great interest during the last years with applications not only in group theory, but also in other areas like cryptography and coding theory. It has experienced a big impulse with the introduction of some permutability conditions. The aim of this book is to gather, order, and examine part of this material, including the latest advances made, give some new approach to some topics, and present some new subjects of research in the theory of finite factorised groups. Some of the topics covered by this book include groups whose subnormal subgroups are normal, permutable, or Sylow-permutable, products of nilpotent groups, and an exhaustive structural study of totally and mutually permutable products of finite groups and their relation with classes of groups. This monograph is mainly addressed to graduate students and senior researchers interested in the study of products and permutability of finite groups. A background in finite group theory and a basic knowledge of representation theory and classes of groups is recommended to follow it.
Download or read book Lectures on Dynamical Systems written by Eduard Zehnder and published by European Mathematical Society. This book was released on 2010 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book originated from an introductory lecture course on dynamical systems given by the author for advanced students in mathematics and physics at ETH Zurich. The first part centers around unstable and chaotic phenomena caused by the occurrence of homoclinic points. The existence of homoclinic points complicates the orbit structure considerably and gives rise to invariant hyperbolic sets nearby. The orbit structure in such sets is analyzed by means of the shadowing lemma, whose proof is based on the contraction principle. This lemma is also used to prove S. Smale's theorem about the embedding of Bernoulli systems near homoclinic orbits. The chaotic behavior is illustrated in the simple mechanical model of a periodically perturbed mathematical pendulum. The second part of the book is devoted to Hamiltonian systems. The Hamiltonian formalism is developed in the elegant language of the exterior calculus. The theorem of V. Arnold and R. Jost shows that the solutions of Hamiltonian systems which possess sufficiently many integrals of motion can be written down explicitly and for all times. The existence proofs of global periodic orbits of Hamiltonian systems on symplectic manifolds are based on a variational principle for the old action functional of classical mechanics. The necessary tools from variational calculus are developed. There is an intimate relation between the periodic orbits of Hamiltonian systems and a class of symplectic invariants called symplectic capacities. From these symplectic invariants one derives surprising symplectic rigidity phenomena. This allows a first glimpse of the fast developing new field of symplectic topology.
Download or read book Geometry in History written by S. G. Dani and published by Springer Nature. This book was released on 2019-10-18 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.