EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The EM Algorithm and Extensions

Download or read book The EM Algorithm and Extensions written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2007-11-09 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.

Book The EM Algorithm and Related Statistical Models

Download or read book The EM Algorithm and Related Statistical Models written by Michiko Watanabe and published by CRC Press. This book was released on 2003-10-15 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the application and formulation of the EM algorithm, The EM Algorithm and Related Statistical Models offers a valuable method for constructing statistical models when only incomplete information is available, and proposes specific estimation algorithms for solutions to incomplete data problems. The text covers current topics including statistical models with latent variables, as well as neural network models, and Markov Chain Monte Carlo methods. It describes software resources valuable for the processing of the EM algorithm with incomplete data and for general analysis of latent structure models of categorical data, and studies accelerated versions of the EM algorithm.

Book Discriminant Analysis and Statistical Pattern Recognition

Download or read book Discriminant Analysis and Statistical Pattern Recognition written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

Book Theory and Use of the EM Algorithm

Download or read book Theory and Use of the EM Algorithm written by Maya R. Gupta and published by Now Publishers Inc. This book was released on 2011 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.

Book Data Analysis and Applications 4

Download or read book Data Analysis and Applications 4 written by Andreas Makrides and published by John Wiley & Sons. This book was released on 2020-04-09 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into three parts: Financial Data Analysis and Methods, Statistics and Stochastic Data Analysis and Methods, and Demographic Methods and Data Analysis- providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.

Book Learning in Graphical Models

Download or read book Learning in Graphical Models written by M.I. Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Book Encyclopedia of Measurement and Statistics

Download or read book Encyclopedia of Measurement and Statistics written by Neil J. Salkind and published by SAGE. This book was released on 2007 with total page 1417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Finite Mixture Models

    Book Details:
  • Author : Geoffrey McLachlan
  • Publisher : John Wiley & Sons
  • Release : 2004-03-22
  • ISBN : 047165406X
  • Pages : 419 pages

Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.

Book Handbook of Mathematical Methods in Imaging

Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Book Probability and Statistics

Download or read book Probability and Statistics written by Thriyambakam Krishnan and published by Universities Press. This book was released on 2001 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Econometric Analysis Using Cross Section and Panel Data

Download or read book Applied Econometric Analysis Using Cross Section and Panel Data written by Deep Mukherjee and published by Springer Nature. This book was released on 2024-01-03 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of 20 chapters on chosen topics from cross-section and panel data econometrics. It explores both theoretical and practical aspects of selected cutting-edge techniques which are gaining popularity among applied econometricians, while following the motto of “keeping things simple”. Each chapter gives a basic introduction to one such method, directs readers to supplementary references, and shows an application. The book takes into account that—A: The field of econometrics is evolving very fast and leading textbooks are trying to cover some of the recent developments in revised editions. This book offers basic introduction to state-of-the-art techniques and recent advances in econometric models with detailed applications from various developing and developed countries. B: An applied researcher or practitioner may prefer reference books with a simple introduction to an advanced econometric method or model with no theorems but with a longer discussion on empirical application. Thus, an applied econometrics textbook covering these cutting-edge methods is highly warranted; a void this book attempts to fills.The book does not aim at providing a comprehensive coverage of econometric methods. The 20 chapters in this book represent only a sample of the important topics in modern econometrics, with special focus on econometrics of cross-section and panel data, while also recognizing that it is not possible to accommodate all types of models and methods even in these two categories. The book is unique as authors have also provided the theoretical background (if any) and brief literature review behind the empirical applications. It is a must-have resource for students and practitioners of modern econometrics.

Book Proceedings of Trends in Electronics and Health Informatics

Download or read book Proceedings of Trends in Electronics and Health Informatics written by Mufti Mahmud and published by Springer Nature. This book was released on 2023-06-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes selected peer-reviewed papers presented at the International Conference on Trends in Electronics and Health Informatics (TEHI 2022), held at University of Puebla, Puebla, México, during December 7–9, 2022. The book is broadly divided into five sections—artificial intelligence and soft computing, healthcare informatics, Internet of things and data analytics, electronics, and communications.

Book Handbook Of Pattern Recognition And Computer Vision  3rd Edition

Download or read book Handbook Of Pattern Recognition And Computer Vision 3rd Edition written by Chi Hau Chen and published by World Scientific. This book was released on 2005-01-14 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures. Recognition applications include character recognition and document analysis, detection of digital mammograms, remote sensing image fusion, and analysis of functional magnetic resonance imaging data, etc. There are six chapters on current activities in human identification. Other topics include moving object tracking, performance evaluation, content-based video analysis, musical style recognition, number plate recognition, etc.

Book Advances in Artificial Intelligence

Download or read book Advances in Artificial Intelligence written by José M. Puerta and published by Springer. This book was released on 2015-11-13 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 16th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2015, held in Albacete, Spain, in November 2015. The 31 revised full papers presented were carefully selected from 175 submissions. The papers are organized in topical sections on Bayesian networks and uncertainty modeling; fuzzy logic and soft computing; knowledge representation, reasoning, and logic; intelligent systems and environment; intelligent Web and recommender systems; machine learning and data mining; metaheuristics and evolutionary computation; and social robotics.

Book Abdominal Imaging  Computational and Clinical Applications

Download or read book Abdominal Imaging Computational and Clinical Applications written by Hiroyuki Yoshida and published by Springer. This book was released on 2012-03-06 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Computational and Clinical Applications in Abdominal Imaging, held in conjunction with MICCAI 2011, in Toronto, Canada, on September 18, 2011. The 33 revised full papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections on virtual colonoscopy and CAD, abdominal intervention, and computational abdominal anatomy.

Book Analyzing Microarray Gene Expression Data

Download or read book Analyzing Microarray Gene Expression Data written by Geoffrey J. McLachlan and published by John Wiley & Sons. This book was released on 2005-02-18 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-discipline, hands-on guide to microarray analysis of biological processes Analyzing Microarray Gene Expression Data provides a comprehensive review of available methodologies for the analysis of data derived from the latest DNA microarray technologies. Designed for biostatisticians entering the field of microarray analysis as well as biologists seeking to more effectively analyze their own experimental data, the text features a unique interdisciplinary approach and a combined academic and practical perspective that offers readers the most complete and applied coverage of the subject matter to date. Following a basic overview of the biological and technical principles behind microarray experimentation, the text provides a look at some of the most effective tools and procedures for achieving optimum reliability and reproducibility of research results, including: An in-depth account of the detection of genes that are differentially expressed across a number of classes of tissues Extensive coverage of both cluster analysis and discriminant analysis of microarray data and the growing applications of both methodologies A model-based approach to cluster analysis, with emphasis on the use of the EMMIX-GENE procedure for the clustering of tissue samples The latest data cleaning and normalization procedures The uses of microarray expression data for providing important prognostic information on the outcome of disease

Book Bayesian Methods in Structural Bioinformatics

Download or read book Bayesian Methods in Structural Bioinformatics written by Thomas Hamelryck and published by Springer. This book was released on 2012-03-23 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focuses on statistical methods that have a clear interpretation in the framework of statistical physics, rather than ad hoc, black box methods based on neural networks or support vector machines. In addition, the emphasis is on methods that deal with biomolecular structure in atomic detail. The book is highly accessible, and only assumes background knowledge on protein structure, with a minimum of mathematical knowledge. Therefore, the book includes introductory chapters that contain a solid introduction to key topics such as Bayesian statistics and concepts in machine learning and statistical physics.