EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Elements of Parallel Computing

Download or read book Elements of Parallel Computing written by Eric Aubanel and published by CRC Press. This book was released on 2016-12-08 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for introductory parallel computing courses at the advanced undergraduate or beginning graduate level, Elements of Parallel Computing presents the fundamental concepts of parallel computing not from the point of view of hardware, but from a more abstract view of algorithmic and implementation patterns. The aim is to facilitate the teaching of parallel programming by surveying some key algorithmic structures and programming models, together with an abstract representation of the underlying hardware. The presentation is friendly and informal. The content of the book is language neutral, using pseudocode that represents common programming language models. The first five chapters present core concepts in parallel computing. SIMD, shared memory, and distributed memory machine models are covered, along with a brief discussion of what their execution models look like. The book also discusses decomposition as a fundamental activity in parallel algorithmic design, starting with a naive example, and continuing with a discussion of some key algorithmic structures. Important programming models are presented in depth, as well as important concepts of performance analysis, including work-depth analysis of task graphs, communication analysis of distributed memory algorithms, key performance metrics, and a discussion of barriers to obtaining good performance. The second part of the book presents three case studies that reinforce the concepts of the earlier chapters. One feature of these chapters is to contrast different solutions to the same problem, using select problems that aren't discussed frequently in parallel computing textbooks. They include the Single Source Shortest Path Problem, the Eikonal equation, and a classical computational geometry problem: computation of the two-dimensional convex hull. After presenting the problem and sequential algorithms, each chapter first discusses the sources of parallelism then surveys parallel algorithms.

Book Elements of Parallel Computing

Download or read book Elements of Parallel Computing written by V. Rajaraman and published by PHI Learning Pvt. Ltd.. This book was released on 2006 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Vipin Kumar and published by Addison Wesley Longman. This book was released on 1994 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Ananth Grama and published by Pearson Education. This book was released on 2003 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Book Parallel Processing for Scientific Computing

Download or read book Parallel Processing for Scientific Computing written by Michael A. Heroux and published by SIAM. This book was released on 2006-01-01 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.

Book Patterns for Parallel Software Design

Download or read book Patterns for Parallel Software Design written by Jorge Luis Ortega-Arjona and published by John Wiley & Sons. This book was released on 2010-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essential reading to understand patterns for parallel programming Software patterns have revolutionized the way we think about how software is designed, built, and documented, and the design of parallel software requires you to consider other particular design aspects and special skills. From clusters to supercomputers, success heavily depends on the design skills of software developers. Patterns for Parallel Software Design presents a pattern-oriented software architecture approach to parallel software design. This approach is not a design method in the classic sense, but a new way of managing and exploiting existing design knowledge for designing parallel programs. Moreover, such approaches enhance not only build-time properties of parallel systems, but also, and particularly, their run-time properties. Features known solutions in concurrent and distributed programming, applied to the development of parallel programs Provides architectural patterns that describe how to divide an algorithm and/or data to find a suitable partition and link it with a programming structure that allows for such a division Presents an architectural point of view and explains the development of parallel software Patterns for Parallel Software Design will give you the skills you need to develop parallel software.

Book Parallel Computing

    Book Details:
  • Author : Christian Bischof
  • Publisher : IOS Press
  • Release : 2008
  • ISBN : 158603796X
  • Pages : 824 pages

Download or read book Parallel Computing written by Christian Bischof and published by IOS Press. This book was released on 2008 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: ParCo2007 marks a quarter of a century of the international conferences on parallel computing that started in Berlin in 1983. The aim of the conference is to give an overview of the developments, applications and future trends in high-performance computing for various platforms.

Book Parallel Computing

Download or read book Parallel Computing written by M. R. Bhujade and published by New Age International. This book was released on 2009 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Patterns for Parallel Programming

Download or read book Patterns for Parallel Programming written by Timothy G. Mattson and published by Pearson Education. This book was released on 2004-09-15 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.

Book Parallel Programming

    Book Details:
  • Author : Thomas Rauber
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-13
  • ISBN : 3642378013
  • Pages : 523 pages

Download or read book Parallel Programming written by Thomas Rauber and published by Springer Science & Business Media. This book was released on 2013-06-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.

Book INTRODUCTION TO PARALLEL PROCESSING

Download or read book INTRODUCTION TO PARALLEL PROCESSING written by M. Sasikumar and published by PHI Learning Pvt. Ltd.. This book was released on 2014-09-02 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written with a straightforward and student-centred approach, this extensively revised, updated and enlarged edition presents a thorough coverage of the various aspects of parallel processing including parallel processing architectures, programmability issues, data dependency analysis, shared memory programming, thread-based implementation, distributed computing, algorithms, parallel programming languages, debugging, parallelism paradigms, distributed databases as well as distributed operating systems. The book, now in its second edition, not only provides sufficient practical exposure to the programming issues but also enables its readers to make realistic attempts at writing parallel programs using easily available software tools. With all the latest information incorporated and several key pedagogical attributes included, this textbook is an invaluable learning tool for the undergraduate and postgraduate students of computer science and engineering. It also caters to the students pursuing master of computer application. What’s New to the Second Edition • A new chapter named Using Parallelism Effectively has been added covering a case study of parallelising a sorting program, and introducing commonly used parallelism models. • Sections describing the map-reduce model, top-500.org initiative, Indian efforts in supercomputing, OpenMP system for shared memory programming, etc. have been added. • Numerous sections have been updated with current information. • Several questions have been incorporated in the chapter-end exercises to guide students from examination and practice points of view.

Book R Programming for Data Science

Download or read book R Programming for Data Science written by Roger D. Peng and published by . This book was released on 2012-04-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox.

Book Parallel and High Performance Computing

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Book PARALLEL COMPUTERS ARCHITECTURE AND PROGRAMMING

Download or read book PARALLEL COMPUTERS ARCHITECTURE AND PROGRAMMING written by V. Rajaraman, and published by PHI Learning Pvt. Ltd.. This book was released on 2016-03-11 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today all computers, from tablet/desktop computers to super computers, work in parallel. A basic knowledge of the architecture of parallel computers and how to program them, is thus, essential for students of computer science and IT professionals. In its second edition, the book retains the lucidity of the first edition and has added new material to reflect the advances in parallel computers. It is designed as text for the final year undergraduate students of computer science and engineering and information technology. It describes the principles of designing parallel computers and how to program them. This second edition, while retaining the general structure of the earlier book, has added two new chapters, ‘Core Level Parallel Processing’ and ‘Grid and Cloud Computing’ based on the emergence of parallel computers on a single silicon chip popularly known as multicore processors and the rapid developments in Cloud Computing. All chapters have been revised and some chapters are re-written to reflect the emergence of multicore processors and the use of MapReduce in processing vast amounts of data. The new edition begins with an introduction to how to solve problems in parallel and describes how parallelism is used in improving the performance of computers. The topics discussed include instruction level parallel processing, architecture of parallel computers, multicore processors, grid and cloud computing, parallel algorithms, parallel programming, compiler transformations, operating systems for parallel computers, and performance evaluation of parallel computers.

Book Parallel Computing Architectures and APIs

Download or read book Parallel Computing Architectures and APIs written by Vivek Kale and published by CRC Press. This book was released on 2019-12-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel Computing Architectures and APIs: IoT Big Data Stream Processing commences from the point high-performance uniprocessors were becoming increasingly complex, expensive, and power-hungry. A basic trade-off exists between the use of one or a small number of such complex processors, at one extreme, and a moderate to very large number of simpler processors, at the other. When combined with a high-bandwidth, interprocessor communication facility leads to significant simplification of the design process. However, two major roadblocks prevent the widespread adoption of such moderately to massively parallel architectures: the interprocessor communication bottleneck, and the difficulty and high cost of algorithm/software development. One of the most important reasons for studying parallel computing architectures is to learn how to extract the best performance from parallel systems. Specifically, you must understand its architectures so that you will be able to exploit those architectures during programming via the standardized APIs. This book would be useful for analysts, designers and developers of high-throughput computing systems essential for big data stream processing emanating from IoT-driven cyber-physical systems (CPS). This pragmatic book: Devolves uniprocessors in terms of a ladder of abstractions to ascertain (say) performance characteristics at a particular level of abstraction Explains limitations of uniprocessor high performance because of Moore’s Law Introduces basics of processors, networks and distributed systems Explains characteristics of parallel systems, parallel computing models and parallel algorithms Explains the three primary categorical representatives of parallel computing architectures, namely, shared memory, message passing and stream processing Introduces the three primary categorical representatives of parallel programming APIs, namely, OpenMP, MPI and CUDA Provides an overview of Internet of Things (IoT), wireless sensor networks (WSN), sensor data processing, Big Data and stream processing Provides introduction to 5G communications, Edge and Fog computing Parallel Computing Architectures and APIs: IoT Big Data Stream Processing discusses stream processing that enables the gathering, processing and analysis of high-volume, heterogeneous, continuous Internet of Things (IoT) big data streams, to extract insights and actionable results in real time. Application domains requiring data stream management include military, homeland security, sensor networks, financial applications, network management, web site performance tracking, real-time credit card fraud detection, etc.

Book Parallel Processing and Parallel Algorithms

Download or read book Parallel Processing and Parallel Algorithms written by Seyed H Roosta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.

Book Parallel Programming for Modern High Performance Computing Systems

Download or read book Parallel Programming for Modern High Performance Computing Systems written by Pawel Czarnul and published by CRC Press. This book was released on 2018-03-05 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs