Download or read book Elements of Algebraic Coding Theory written by L.R. Vermani and published by CRC Press. This book was released on 1996-07-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coding theory came into existence in the late 1940's and is concerned with devising efficient encoding and decoding procedures. The book is intended as a principal text for first courses in coding and algebraic coding theory, and is aimed at advanced undergraduates and recent graduates as both a course and self-study text. BCH and cyclic, Group codes, Hamming codes, polynomial as well as many other codes are introduced in this textbook. Incorporating numerous worked examples and complete logical proofs, it is an ideal introduction to the fundamental of algebraic coding.
Download or read book Elements of Algebraic Coding Theory written by Lekh R. Vermani and published by Routledge. This book was released on 2022-01-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coding theory came into existence in the late 1940s and is concerned with devising efficient encoding and decoding procedures. The book is intended as a principal text for first courses in coding and algebraic coding theory, and is aimed at advanced undergraduates and recent graduates as both a course and self-study text. BCH and cyclic, Group codes, Hamming codes, polynomial as well as many other codes are introduced in this textbook. Incorporating numerous worked examples and complete logical proofs, it is an ideal introduction to the fundamental of algebraic coding.
Download or read book Algebraic Geometry in Coding Theory and Cryptography written by Harald Niederreiter and published by Princeton University Press. This book was released on 2009-09-21 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books
Download or read book Algebraic Codes on Lines Planes and Curves written by Richard E. Blahut and published by Cambridge University Press. This book was released on 2008-04-03 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics.
Download or read book A First Course in Coding Theory written by Raymond Hill and published by Oxford University Press. This book was released on 1986 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.
Download or read book Codes and Curves written by Judy L. Walker and published by American Mathematical Soc.. This book was released on 2000 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry is introduced, with particular attention given to projective curves, rational functions and divisors. The construction of algebraic geometric codes is given, and the Tsfasman-Vladut-Zink result mentioned above it discussed."--BOOK JACKET.
Download or read book Algebraic Coding Theory Revised Edition written by Elwyn R Berlekamp and published by World Scientific. This book was released on 2015-03-26 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the revised edition of Berlekamp's famous book, 'Algebraic Coding Theory', originally published in 1968, wherein he introduced several algorithms which have subsequently dominated engineering practice in this field. One of these is an algorithm for decoding Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes that subsequently became known as the Berlekamp-Massey Algorithm. Another is the Berlekamp algorithm for factoring polynomials over finite fields, whose later extensions and embellishments became widely used in symbolic manipulation systems. Other novel algorithms improved the basic methods for doing various arithmetic operations in finite fields of characteristic two. Other major research contributions in this book included a new class of Lee metric codes, and precise asymptotic results on the number of information symbols in long binary BCH codes.Selected chapters of the book became a standard graduate textbook.Both practicing engineers and scholars will find this book to be of great value.
Download or read book Algebraic Coding Theory and Information Theory written by Alexei Ashikhmin and published by American Mathematical Soc.. This book was released on 2005 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these papers associated with the workshop of December 2003, contributors describe their work in fountain codes for lossless data compression, an application of coding theory to universal lossless source coding performance bounds, expander graphs and codes, multilevel expander codes, low parity check lattices, sparse factor graph representations of Reed-Solomon and related codes. Interpolation multiplicity assignment algorithms for algebraic soft- decision decoding of Reed-Solomon codes, the capacity of two- dimensional weight-constrained memories, networks of two-way channels, and a new approach to the design of digital communication systems. Annotation :2005 Book News, Inc., Portland, OR (booknews.com).
Download or read book The Mathematical Theory of Coding written by Ian F. Blake and published by Academic Press. This book was released on 2014-05-10 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.
Download or read book Coding Theory written by San Ling and published by Cambridge University Press. This book was released on 2004-02-12 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coding theory is concerned with successfully transmitting data through a noisy channel and correcting errors in corrupted messages. It is of central importance for many applications in computer science or engineering. This book gives a comprehensive introduction to coding theory whilst only assuming basic linear algebra. It contains a detailed and rigorous introduction to the theory of block codes and moves on to more advanced topics like BCH codes, Goppa codes and Sudan's algorithm for list decoding. The issues of bounds and decoding, essential to the design of good codes, features prominently. The authors of this book have, for several years, successfully taught a course on coding theory to students at the National University of Singapore. This book is based on their experiences and provides a thoroughly modern introduction to the subject. There are numerous examples and exercises, some of which introduce students to novel or more advanced material.
Download or read book Introduction to Coding and Information Theory written by Steven Roman and published by Springer Science & Business Media. This book was released on 1996-11-26 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.
Download or read book Coding and Information Theory written by Steven Roman and published by Springer Science & Business Media. This book was released on 1992-06-04 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.
Download or read book Algebraic and Stochastic Coding Theory written by Dave K. Kythe and published by CRC Press. This book was released on 2017-07-28 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes. It then examines codes based on the Galois field theory as well as their application in BCH and especially the Reed–Solomon codes that have been used for error correction of data transmissions in space missions. The major outlook in coding theory seems to be geared toward stochastic processes, and this book takes a bold step in this direction. As research focuses on error correction and recovery of erasures, the book discusses belief propagation and distributions. It examines the low-density parity-check and erasure codes that have opened up new approaches to improve wide-area network data transmission. It also describes modern codes, such as the Luby transform and Raptor codes, that are enabling new directions in high-speed transmission of very large data to multiple users. This robust, self-contained text fully explains coding problems, illustrating them with more than 200 examples. Combining theory and computational techniques, it will appeal not only to students but also to industry professionals, researchers, and academics in areas such as coding theory and signal and image processing.
Download or read book Abstract Algebra written by Thomas Judson and published by Orthogonal Publishing L3c. This book was released on 2023-08-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.
Download or read book Boolean Functions for Cryptography and Coding Theory written by Claude Carlet and published by Cambridge University Press. This book was released on 2021-01-07 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boolean functions are essential to systems for secure and reliable communication. This comprehensive survey of Boolean functions for cryptography and coding covers the whole domain and all important results, building on the author's influential articles with additional topics and recent results. A useful resource for researchers and graduate students, the book balances detailed discussions of properties and parameters with examples of various types of cryptographic attacks that motivate the consideration of these parameters. It provides all the necessary background on mathematics, cryptography, and coding, and an overview on recent applications, such as side channel attacks on smart cards, cloud computing through fully homomorphic encryption, and local pseudo-random generators. The result is a complete and accessible text on the state of the art in single and multiple output Boolean functions that illustrates the interaction between mathematics, computer science, and telecommunications.
Download or read book Error Correcting Codes written by D J. Baylis and published by Routledge. This book was released on 2018-05-11 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming little previous mathematical knowledge, Error Correcting Codes provides a sound introduction to key areas of the subject. Topics have been chosen for their importance and practical significance, which Baylis demonstrates in a rigorous but gentle mathematical style.Coverage includes optimal codes; linear and non-linear codes; general techniques of decoding errors and erasures; error detection; syndrome decoding, and much more. Error Correcting Codes contains not only straight maths, but also exercises on more investigational problem solving. Chapters on number theory and polynomial algebra are included to support linear codes and cyclic codes, and an extensive reminder of relevant topics in linear algebra is given. Exercises are placed within the main body of the text to encourage active participation by the reader, with comprehensive solutions provided.Error Correcting Codes will appeal to undergraduate students in pure and applied mathematical fields, software engineering, communications engineering, computer science and information technology, and to organizations with substantial research and development in those areas.
Download or read book Information and Coding Theory written by Gareth A. Jones and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon’s Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises.