Download or read book The Mathematics Teacher in the Digital Era written by Alison Clark-Wilson and published by Springer Science & Business Media. This book was released on 2013-12-08 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume addresses the key issue of the initial education and lifelong professional learning of teachers of mathematics to enable them to realize the affordances of educational technology for mathematics. With invited contributions from leading scholars in the field, this volume contains a blend of research articles and descriptive texts. In the opening chapter John Mason invites the reader to engage in a number of mathematics tasks that highlight important features of technology-mediated mathematical activity. This is followed by three main sections: An overview of current practices in teachers’ use of digital technologies in the classroom and explorations of the possibilities for developing more effective practices drawing on a range of research perspectives (including grounded theory, enactivism and Valsiner’s zone theory). A set of chapters that share many common constructs (such as instrumental orchestration, instrumental distance and double instrumental genesis) and research settings that have emerged from the French research community, but have also been taken up by other colleagues. Meta-level considerations of research in the domain by contrasting different approaches and proposing connecting or uniting elements
Download or read book Elementi di matematica Modulo L giallo verde La geometria analitica Per le Scuole superiori written by Massimo Bergamini and published by . This book was released on 2001 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Esercizi di analisi e geometria 1 written by Emanuele Munarini and published by Società Editrice Esculapio. This book was released on 2020-07-01 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Argomento 1. Numeri reali e complessi. Numeri razionali e numeri reali. Massimo e minimo estremo superiore ed inferiore di un insieme di numeri reali. Numeri complessi e loro algebra: forma trigonometrica, formula di De Moivre, radici n-esime, forma esponenziale. Argomento 2. Funzioni, limiti, continuità. Funzioni di variabile reale. Grafici delle funzioni elementari. Funzioni composte, funzioni inverse. Successioni. Definizioni di limite. Il numero e. Limiti notevoli. Infinitesimi ed infiniti. Continuità e teoremi sulle funzioni continue (di Weierstrass, degli zeri e dei valori intermedi). Argomento 3. Calcolo differenziale. Concetto di derivata e proprietà. Teoremi di Fermat, del valor medio (o di Lagrange) e di de l'Hospital. Test di monotonia e di riconoscimento dei punti stazionari. Concavità/convessità e flessi. Differenziale. Formula di Taylor. Studio del grafico di una funzione. Argomento 4. Calcolo integrale. Integrale di Riemann. Proprietà dell’integrale. Funzioni definite da integrali. Teoremi fondamentali del calcolo. Calcolo di primitive: integrazione di funzioni razionali fratte, per sostituzione e per parti. Integrali generalizzati. Criteri di convergenza. Integrali dipendenti da un parametro. Derivazione sotto il segno di integrale. Argomento 5. Equazioni differenziali I . Soluzione di equazioni a variabili separabili ed equazioni lineari del primo ordine. Problema di Cauchy per equazioni del prim'ordine. Modelli di Malthus e di Verhulst. Argomento 6. Vettori ed elementi di geometria analitica del piano e dello spazio. Vettori nel piano e nello spazio: somma e prodotto di un vettore. Prodotto scalare, norma, distanza, angoli, basi ortonormali e proiezioni ortogonali. Prodotto vettoriale e area. Prodotto misto e volume. Equazioni parametriche e cartesiane di rette e piani nello spazio. Equazioni di circonferenze nel piano e di sfere nello spazio. Argomento 7. Curve nel piano e nello spazio, integrali di linea. Calcolo differenziale per funzioni vettoriali di una variabile.Versori tangente, normale, e binormale. Curve nel piano e nello spazio: lunghezza di una curva, parametro d'arco. Integrali di linea di prima specie. Applicazioni fisiche.
Download or read book Elementi di calcolo vettoriale written by Cesare Burali-Forti and published by . This book was released on 1920 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analisi e Geometria 1 written by Emanuele Munarini and published by Società Editrice Esculapio. This book was released on 2020-07-01 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Argomento 1. Numeri reali e complessi. Numeri razionali e numeri reali. Massimo e minimo estremo superiore ed inferiore di un insieme di numeri reali. Numeri complessi e loro algebra: forma trigonometrica, formula di De Moivre, radici n-esime, forma esponenziale. Argomento 2. Funzioni, limiti, continuità. Funzioni di variabile reale. Grafici delle funzioni elementari. Funzioni composte, funzioni inverse. Successioni. Definizioni di limite. Il numero e. Limiti notevoli. Infinitesimi ed infiniti. Continuità e teoremi sulle funzioni continue (di Weierstrass, degli zeri e dei valori intermedi). Argomento 3. Calcolo differenziale. Concetto di derivata e proprietà. Teoremi di Fermat, del valor medio (o di Lagrange) e di de l'Hospital. Test di monotonia e di riconoscimento dei punti stazionari. Concavità/convessità e flessi. Differenziale. Formula di Taylor. Studio del grafico di una funzione. Argomento 4. Calcolo integrale. Integrale di Riemann. Proprietà dell’integrale. Funzioni definite da integrali. Teoremi fondamentali del calcolo. Calcolo di primitive: integrazione di funzioni razionali fratte, per sostituzione e per parti. Integrali generalizzati. Criteri di convergenza. Integrali dipendenti da un parametro. Derivazione sotto il segno di integrale. Argomento 5. Equazioni differenziali I . Soluzione di equazioni a variabili separabili ed equazioni lineari del primo ordine. Problema di Cauchy per equazioni del prim'ordine. Modelli di Malthus e di Verhulst. Argomento 6. Vettori ed elementi di geometria analitica del piano e dello spazio. Vettori nel piano e nello spazio: somma e prodotto di un vettore. Prodotto scalare, norma, distanza, angoli, basi ortonormali e proiezioni ortogonali. Prodotto vettoriale e area. Prodotto misto e volume. Equazioni parametriche e cartesiane di rette e piani nello spazio. Equazioni di circonferenze nel piano e di sfere nello spazio. Argomento 7. Curve nel piano e nello spazio, integrali di linea. Calcolo differenziale per funzioni vettoriali di una variabile.Versori tangente, normale, e binormale. Curve nel piano e nello spazio: lunghezza di una curva, parametro d'arco. Integrali di linea di prima specie. Applicazioni fisiche.