EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Elementary Symplectic Topology and Mechanics

Download or read book Elementary Symplectic Topology and Mechanics written by Franco Cardin and published by Springer. This book was released on 2014-12-01 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.

Book Elementary Symplectic Topology and Mechanics

Download or read book Elementary Symplectic Topology and Mechanics written by Franco Cardin and published by . This book was released on 2014-12-31 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Symplectic Geometry and Topology

Download or read book Symplectic Geometry and Topology written by Yakov Eliashberg and published by American Mathematical Soc.. This book was released on 2004 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Book Analytical Mechanics

    Book Details:
  • Author : Sergio Cecotti
  • Publisher : Springer Nature
  • Release :
  • ISBN : 3031592646
  • Pages : 354 pages

Download or read book Analytical Mechanics written by Sergio Cecotti and published by Springer Nature. This book was released on with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book Symplectic Geometry

    Book Details:
  • Author : Helmut Hofer
  • Publisher : Springer Nature
  • Release : 2022-12-05
  • ISBN : 3031191110
  • Pages : 1158 pages

Download or read book Symplectic Geometry written by Helmut Hofer and published by Springer Nature. This book was released on 2022-12-05 with total page 1158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

Book Analytical Mechanics

    Book Details:
  • Author : Valter Moretti
  • Publisher : Springer Nature
  • Release : 2023-05-31
  • ISBN : 3031276124
  • Pages : 848 pages

Download or read book Analytical Mechanics written by Valter Moretti and published by Springer Nature. This book was released on 2023-05-31 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook aims at introducing readers, primarily students enrolled in undergraduate Mathematics or Physics courses, to the topics and methods of classical Mathematical Physics, including Classical Mechanics, its Lagrangian and Hamiltonian formulations, Lyapunov stability, plus the Liouville theorem and the Poincaré recurrence theorem among others. The material also rigorously covers the theory of Special Relativity. The logical-mathematical structure of the physical theories of concern is introduced in an axiomatic way, starting from a limited number of physical assumptions. Special attention is paid to themes with a major impact on Theoretical and Mathematical Physics beyond Analytical Mechanics, such as the Galilean symmetry of classical Dynamics and the Poincaré symmetry of relativistic Dynamics, the far-fetching relationship between symmetries and constants of motion, the coordinate-free nature of the underpinning mathematical objects, or the possibility of describing Dynamics in a global way while still working in local coordinates. Based on the author’s established teaching experience, the text was conceived to be flexible and thus adapt to different curricula and to the needs of a wide range of students and instructors.

Book Symplectic Methods in Harmonic Analysis and in Mathematical Physics

Download or read book Symplectic Methods in Harmonic Analysis and in Mathematical Physics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2011-07-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.

Book Mathematical Methods of Classical Mechanics

Download or read book Mathematical Methods of Classical Mechanics written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Book Structure of Dynamical Systems

Download or read book Structure of Dynamical Systems written by J.M. Souriau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.

Book Symplectic Invariants and Hamiltonian Dynamics

Download or read book Symplectic Invariants and Hamiltonian Dynamics written by Helmut Hofer and published by Birkhäuser. This book was released on 2012-12-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.

Book Principles Of Newtonian And Quantum Mechanics  The  The Need For Planck s Constant  H  Second Edition

Download or read book Principles Of Newtonian And Quantum Mechanics The The Need For Planck s Constant H Second Edition written by Maurice A De Gosson and published by World Scientific. This book was released on 2016-11-10 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.

Book Symplectic Geometry and Quantum Mechanics

Download or read book Symplectic Geometry and Quantum Mechanics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2006-08-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.

Book Differential Geometry and Mathematical Physics

Download or read book Differential Geometry and Mathematical Physics written by Gerd Rudolph and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Book Mathematical Methods of Classical Mechanics

Download or read book Mathematical Methods of Classical Mechanics written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 1997-09-05 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Book Symplectic Geometry and Fourier Analysis

Download or read book Symplectic Geometry and Fourier Analysis written by Nolan R. Wallach and published by Courier Dover Publications. This book was released on 2018-03-21 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

Book Dynamical Systems and Geometric Mechanics

Download or read book Dynamical Systems and Geometric Mechanics written by Jared Maruskin and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-08-21 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.