EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Elementary Introduction to the Lebesgue Integral

Download or read book Elementary Introduction to the Lebesgue Integral written by Steven G. Krantz and published by CRC Press. This book was released on 2018-04-17 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Introduction to the Lebesgue Integral is not just an excellent primer of the Lebesgue integral for undergraduate students but a valuable tool for tomorrow’s mathematicians. Since the early twentieth century, the Lebesgue integral has been a mainstay of mathematical analysis because of its important properties with respect to limits. For this reason, it is vital that mathematical students properly understand the complexities of the Lebesgue integral. However, most texts about the subject are geared towards graduate students, which makes it a challenge for instructors to properly teach and for less advanced students to learn. Ensuring that the subject is accessible for all readers, the author presents the text in a clear and concrete manner which allows readers to focus on the real line. This is important because Lebesgue integral can be challenging to understand when compared to more widely used integrals like the Riemann integral. The author also includes in the textbook abundant examples and exercises to help explain the topic. Other topics explored in greater detail are abstract measure spaces and product measures, which are treated concretely. Features: Comprehensibly written introduction to the Lebesgue integral for undergraduate students Includes many examples, figures and exercises Features a Table of Notation and Glossary to aid readers Solutions to selected exercises

Book An Introduction to Lebesgue Integration and Fourier Series

Download or read book An Introduction to Lebesgue Integration and Fourier Series written by Howard J. Wilcox and published by Courier Corporation. This book was released on 2012-04-30 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.

Book The Lebesgue Integral for Undergraduates

Download or read book The Lebesgue Integral for Undergraduates written by William Johnston and published by The Mathematical Association of America. This book was released on 2015-09-25 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1902, modern function theory began when Henri Lebesgue described a new "integral calculus." His "Lebesgue integral" handles more functions than the traditional integral-so many more that mathematicians can study collections (spaces) of functions. For example, it defines a distance between any two functions in a space. This book describes these ideas in an elementary accessible way. Anyone who has mastered calculus concepts of limits, derivatives, and series can enjoy the material. Unlike any other text, this book brings analysis research topics within reach of readers even just beginning to think about functions from a theoretical point of view.

Book Elementary Introduction to the Lebesgue Integral

Download or read book Elementary Introduction to the Lebesgue Integral written by Steven G. Krantz and published by CRC Press. This book was released on 2018-04-17 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Introduction to the Lebesgue Integral is not just an excellent primer of the Lebesgue integral for undergraduate students but a valuable tool for tomorrow’s mathematicians. Since the early twentieth century, the Lebesgue integral has been a mainstay of mathematical analysis because of its important properties with respect to limits. For this reason, it is vital that mathematical students properly understand the complexities of the Lebesgue integral. However, most texts about the subject are geared towards graduate students, which makes it a challenge for instructors to properly teach and for less advanced students to learn. Ensuring that the subject is accessible for all readers, the author presents the text in a clear and concrete manner which allows readers to focus on the real line. This is important because Lebesgue integral can be challenging to understand when compared to more widely used integrals like the Riemann integral. The author also includes in the textbook abundant examples and exercises to help explain the topic. Other topics explored in greater detail are abstract measure spaces and product measures, which are treated concretely. Features: Comprehensibly written introduction to the Lebesgue integral for undergraduate students Includes many examples, figures and exercises Features a Table of Notation and Glossary to aid readers Solutions to selected exercises

Book Lebesgue Integration on Euclidean Space

Download or read book Lebesgue Integration on Euclidean Space written by Frank Jones and published by Jones & Bartlett Learning. This book was released on 2001 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: "'Lebesgue Integration on Euclidean Space' contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. It contains many exercises that are incorporated throughout the text, enabling the reader to apply immediately the new ideas that have been presented" --

Book Lectures on Functional Analysis and the Lebesgue Integral

Download or read book Lectures on Functional Analysis and the Lebesgue Integral written by Vilmos Komornik and published by Springer. This book was released on 2016-06-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small lp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.

Book General Integration and Measure

Download or read book General Integration and Measure written by Alan J. Weir and published by CUP Archive. This book was released on 1974-11-14 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a sequel to Dr Weir's undergraduate textbook on Lebesgue Integration and Measure (CUP. 1973) in which he provided a concrete approach to the Lebesgue integral in terms of step functions and went on from there to deduce the abstract concept of Lebesgue measure. In this second volume, the treatment of the Lebesgue integral is generalised to give the Daniell integral and the related general theory of measure. This approach via integration of elementary functions is particularly well adapted to the proof of Riesz's famous theorems about linear functionals on the classical spaces C (X) and LP and also to the study of topological notions such as Borel measure. This book will be used for final year honours courses in pure mathematics and for graduate courses in functional analysis and measure theory.

Book A Radical Approach to Lebesgue s Theory of Integration

Download or read book A Radical Approach to Lebesgue s Theory of Integration written by David M. Bressoud and published by Cambridge University Press. This book was released on 2008-01-21 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meant for advanced undergraduate and graduate students in mathematics, this introduction to measure theory and Lebesgue integration is motivated by the historical questions that led to its development. The author tells the story of the mathematicians who wrestled with the difficulties inherent in the Riemann integral, leading to the work of Jordan, Borel, and Lebesgue.

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book The Lebesgue Integral

    Book Details:
  • Author : J. C. Burkill
  • Publisher : Cambridge University Press
  • Release : 2004-06-03
  • ISBN : 9780521604802
  • Pages : 112 pages

Download or read book The Lebesgue Integral written by J. C. Burkill and published by Cambridge University Press. This book was released on 2004-06-03 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr Burkill gives a straightforward introduction to Lebesgue's theory of integration. His approach is the classical one, making use of the concept of measure, and deriving the principal results required for applications of the theory.

Book Functional Analysis

    Book Details:
  • Author : Markus Haase
  • Publisher : American Mathematical Society
  • Release : 2014-09-17
  • ISBN : 0821891715
  • Pages : 394 pages

Download or read book Functional Analysis written by Markus Haase and published by American Mathematical Society. This book was released on 2014-09-17 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn-Banach theorem provide a stepping-stone to more advanced texts. The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.

Book Measure  Integral  Derivative

Download or read book Measure Integral Derivative written by Sergei Ovchinnikov and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested text is intended for a one-semester course in Lebesgue’s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. http://online.sfsu.edu/sergei/MID.htm

Book The Integrals of Lebesgue  Denjoy  Perron  and Henstock

Download or read book The Integrals of Lebesgue Denjoy Perron and Henstock written by Russell A. Gordon and published by American Mathematical Soc.. This book was released on 1994-01-01 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an elementary, self-contained presentation of the integration processes developed by Lebesgue, Denjoy, Perron, and Henstock. An excellent text for graduate students with a background in real analysis.

Book Lebesgue Measure and Integration

Download or read book Lebesgue Measure and Integration written by Frank Burk and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.

Book Introduction to Gauge Integrals

Download or read book Introduction to Gauge Integrals written by Charles Swartz and published by World Scientific. This book was released on 2001 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc. Contents: Introduction to the Gauge or Henstock-Kurzweil Integral; Basic Properties of the Gauge Integral; Henstock''s Lemma and Improper Integrals; The Gauge Integral over Unbounded Intervals; Convergence Theorems; Integration over More General Sets: Lebesgue Measure; The Space of Gauge Integrable Functions; Multiple Integrals and Fubini''s Theorem; The McShane Integral; McShane Integrability is Equivalent to Absolute Henstock-Kurzweil Integrability. Readership: Upper level undergraduates and mathematicians interested in gauge integrals.

Book The Lebesgue Integral

Download or read book The Lebesgue Integral written by Open University. M431 Course Team and published by . This book was released on 1992 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Measure  Integral and Probability

Download or read book Measure Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.