Download or read book Elementary Differential Equations with Boundary Value Problems written by William F. Trench and published by Thomson Brooks/Cole. This book was released on 2001 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Download or read book Elementary Differential Equations and Boundary Value Problems written by William E. Boyce and published by John Wiley & Sons. This book was released on 2017-08-21 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
Download or read book Elementary Differential Equations written by William E. Boyce and published by John Wiley & Sons. This book was released on 2017-08-14 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: With Wiley's Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including: Embedded & searchable equations, figures & tables Math XML Index with linked pages numbers for easy reference Redrawn full color figures to allow for easier identification Elementary Differential Equations, 11th Edition is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two ] or three ] semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
Download or read book Elementary Differential Equations and Boundary Value Problems written by William E. Boyce and published by Wiley. This book was released on 2012-12-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 10th edition of Elementary Differential Equations and Boundary Value Problems, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 10th edition includes new problems, updated figures and examples to help motivate students. The book is written primarily for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for reading the book is a working knowledge of calculus, gained from a normal two?(or three) semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
Download or read book Elementary Partial Differential Equations with Boundary Value Problems written by Larry C. Andrews and published by Harcourt College Pub. This book was released on 1986-01-01 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Differential Equations and Boundary Value Problems written by William E. Boyce and published by . This book was released on 2015 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Differential Equations with Boundary Value Problems written by Werner E. Kohler and published by Pearson Higher Ed. This book was released on 2014-01-14 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Elementary Differential Equations with Boundary Value Problems integrates the underlying theory, the solution procedures, and the numerical/computational aspects of differential equations in a seamless way. For example, whenever a new type of problem is introduced (such as first-order equations, higher-order equations, systems of differential equations, etc.) the text begins with the basic existence-uniqueness theory. This provides the student the necessary framework to understand and solve differential equations. Theory is presented as simply as possible with an emphasis on how to use it. The Table of Contents is comprehensive and allows flexibility for instructors.
Download or read book Boundary Value Problems Weyl Functions and Differential Operators written by Jussi Behrndt and published by Springer Nature. This book was released on 2020-01-03 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.
Download or read book Differential Equations with Boundary value Problems written by Dennis G. Zill and published by . This book was released on 2005 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now enhanced with the innovative DE Tools CD-ROM and the iLrn teaching and learning system, this proven text explains the "how" behind the material and strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This accessible text speaks to students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. This book was written with the student's understanding firmly in mind. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations.
Download or read book Differential Equations and Boundary Value Problems written by Charles Henry Edwards and published by Pearson. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from the perspective of the applied mathematician, the latest edition of this bestselling book focuses on the theory and practical applications of Differential Equations to engineering and the sciences. Emphasis is placed on the methods of solution, analysis, and approximation. Use of technology, illustrations, and problem sets help readers develop an intuitive understanding of the material. Historical footnotes trace the development of the discipline and identify outstanding individual contributions. This book builds the foundation for anyone who needs to learn differential equations and then progress to more advanced studies.
Download or read book A Second Course in Elementary Differential Equations written by Paul Waltman and published by Elsevier. This book was released on 2014-05-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.
Download or read book Elementary Differential Equations written by Charles Henry Edwards and published by . This book was released on 2008 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Solving Ordinary and Partial Boundary Value Problems in Science and Engineering written by Karel Rektorys and published by CRC Press. This book was released on 1998-10-20 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an elementary, accessible introduction for engineers and scientists to the concepts of ordinary and partial boundary value problems, acquainting readers with fundamental properties and with efficient methods of constructing solutions or satisfactory approximations. Discussions include: ordinary differential equations classical theory of partial differential equations Laplace and Poisson equations heat equation variational methods of solution of corresponding boundary value problems methods of solution for evolution partial differential equations The author presents special remarks for the mathematical reader, demonstrating the possibility of generalizations of obtained results and showing connections between them. For the non-mathematician, the author provides profound functional-analytical results without proofs and refers the reader to the literature when necessary. Solving Ordinary and Partial Boundary Value Problems in Science and Engineering contains essential functional analytical concepts, explaining its subject without excessive abstraction.
Download or read book Initial boundary Value Problems and the Navier Stokes Equations written by Heinz-Otto Kreiss and published by SIAM. This book was released on 1989-01-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.
Download or read book Partial Differential Equations and Boundary Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Download or read book Elementary Differential Equations and Boundary Value Problems written by William E. Boyce and published by . This book was released on 1997 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all the essential topics on differential equations, including series solutions, Laplace transforms, systems of equations, numerical methods and phase plane methods. Clear explanations are detailed with many current examples.