EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electronic  Atomic and Molecular Calculations

Download or read book Electronic Atomic and Molecular Calculations written by Milan Trsic and published by Elsevier. This book was released on 2011-08-30 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Generator Coordinate Method (GCM) is a mathematical tool for the understanding of stable atomic nuclei. Electronic, Atomic and Molecular Calculations is designed to assist scientists applying GCM in the analysis of the electronic structure of atoms and molecules. There have been numerous publications covering nuclear physics and electronic structure of atoms and molecules, but this book is unique in the sense that it specifically addresses the application of GCM for such purposes. Using this book, researchers will be able to understand and calculate the electronic structure in a novel manner. * Only book that covers the Generator Coordinate Method and applications for atoms, molecules and nuclei * Clearly describes how the GCM can be used as a powerful tool for design of atomic basis sets * Reviews current literature on GCM in atomic and molecular fields and a large part of the literature of the method in nuclear physics

Book Theory of Electronic  Atomic  and Molecular Calculations

Download or read book Theory of Electronic Atomic and Molecular Calculations written by Robert K. Nesbet and published by . This book was released on 1980 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general approach is to develop computational methods that are quantitative in the sense of being based on the exact formal theory of the processes considered, and are practicable, in the sense of being capable of implementation on digital computers at the present level of technology. For atom-molecule scattering, a new method is being developed that extends a recent theory of the action constants of nonseparable dynamical systems to collision problems. For electron-molecule scattering, a new method for treating vibrational and rotational excitation has been developed, formal theoretical relations needed in detailed applications of this method are being derived, and a new variational approach to quantitative fixed-nuclei calculations is being planned for practical implementation. (Author).

Book Methods of Electronic Structure Theory

Download or read book Methods of Electronic Structure Theory written by Henry F. Schaefer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: These two volumes deal with the quantum theory of the electronic structure of molecules. Implicit in the term ab initio is the notion that approximate solutions of Schrödinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In asense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those develop ing new theoretical and computational methods and models. Henry F Schaefer Vll Contents Contents of Volume 4 XIX Chapter 1. Gaussian Basis Sets for Molecular Calculations Thom. H. Dunning, Ir. and P. Ieffrey Hay 1. Introduction . . . . . . . . . . . . . . . . 1 1. 1. Slater Functions and the Hydrogen Moleeule 1 1. 2. Gaussian Functions and the Hydrogen Atom 3 2. Hartree-Fock Calculations on the First Row Atoms 5 2. 1. Valence States of the First Row Atoms 6 7 2. 2. Rydberg States of the First Row Atoms 9 2. 3.

Book Computation of Atomic and Molecular Processes

Download or read book Computation of Atomic and Molecular Processes written by Miron Ya. Amusia and published by Springer Nature. This book was released on 2021-12-02 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents numerical methods for solving a wide range of problems associated with the structure of atoms and simplest molecules, and their interaction with electromagnetic radiation, electrons, and other particles. It introduces the ATOM-M software package, presenting a unified software suite, written in Fortran, for carrying out precise atomic and molecular numeric calculations. The book shows how to apply these numerical methods to obtain many different characteristics of atoms, molecules, and the various processes within which they interact. In an entirely self-sufficient approach, it teaches the reader how to use the codes provided to build atomic and molecular systems from the ground up and obtain the resulting one-electron wave functions. The computational programs presented and made available in this book allow calculations in the one-electron Hartree–Fock approximation and take into account many-electron correlations within the framework of the random-phase approximation with exchange or many-body perturbation theory. Ideal for scholars interested in numerical computation of atomic and molecular processes, the material presented in this book is useful to both experts and novices, theorists, and experimentalists.

Book Atoms  Molecules and Clusters in Electric Fields

Download or read book Atoms Molecules and Clusters in Electric Fields written by George Maroulis and published by Imperial College Press. This book was released on 2006 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the central importance of electric polarizability and hyperpolarizability for a wide spectrum of activities, this book charts the trends in the accurate theoretical determination of these properties in specialized fields. The contributions include reviews and original papers that extend from methodology to applications in specific areas of primary importance such as cluster science and organic synthesis of molecules with specific properties.

Book Relativistic Quantum Theory of Atoms and Molecules

Download or read book Relativistic Quantum Theory of Atoms and Molecules written by Ian P Grant and published by Springer Science & Business Media. This book was released on 2007-04-15 with total page 813 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.

Book Computational Aspects of Electric Polarizability Calculations

Download or read book Computational Aspects of Electric Polarizability Calculations written by George Maroulis and published by IOS Press. This book was released on 2006 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers such subjects as: Ab initio and Density functional theory calculations of electric polarizability and hyperpolarizability, intermolecular forces, aromaticity, electric properties of solvated molecules, NLO materials, Raman intensities, polarizability of metal and semiconductor clusters, relativistic effects on electric properties, and more.

Book Methods in Computational Chemistry

Download or read book Methods in Computational Chemistry written by Stephen Wilson and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: When, forty years ago, as a student of Charles Coulson in Oxford I began work in theoretical chemistry, I was provided with a Brunsviga calculator-a small mechanical device with a handle for propulsion, metal levers for setting the numbers, and a bell that rang to indicate overflow. What has since come to be known as computational chemistry was just beginning. There followed a long period in which the fundamental theory of the "golden age" (1925-1935) was extended and refined and in which the dreams of the early practitioners were gradually turned into hard arithmetic reality. As a still-computing survivor from the early postwar days now enjoying the benefits of unbelievably improved hardware, I am glad to contribute a foreword to this series and to have the opportunity of providing a little historical perspective. After the Brunsviga came the electromechanical machines of the late 1940s and early 1950s, and a great reduction in the burden of calculating molecular wavefunctions. We were now happy. At least for systems con taining a few electrons it was possible to make fully ab initio calculations, even though semiempirical models remained indispensable for most molecules of everyday interest. The 1950 papers of Hall and of Roothaan represented an important milestone along the road to larger-scale non empirical calculations, extending the prewar work of Hartree and Fock from many-electron atoms to many-electron molecules-and thus into "real chemistry.

Book Electronic States of Molecules and Atom Clusters

Download or read book Electronic States of Molecules and Atom Clusters written by G. Del Re and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methods of Electronic Structure Calculations

Download or read book Methods of Electronic Structure Calculations written by Michael Springborg and published by Wiley. This book was released on 2000-07-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic-structure calculations of the properties of specific materials have become increasingly important over the last 30 years. Although several books on the subject have been published, it is rare to find one that covers in detail both the traditional quantum chemistry and the solid-state physics methods of electronic-structure calculations. This title bridges that gap, focusing equally on both types of method, including density-functional and Hartree-Fock-based approaches. The book is aimed at final-year undergraduate and postgraduate students of both chemistry and of physics. It describes in detail the fundamentals behind the various methods that are used in calculating electronic properties of materials, and that to some extent are commercially available. It should also be of interest to professional scientists working in related theoretical or experimental fields.

Book Ab Initio Valence Calculations in Chemistry

Download or read book Ab Initio Valence Calculations in Chemistry written by D. B. Cook and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinger equation to solve the electronic structure of molecular systems. This discussion is followed by two chapters that describe the chemical and mathematical nature of orbital theories in quantum chemistry. Two general ways of using chemical and physical information in looking for approximate solutions of the Schrödinger equation are highlighted: model approximations and numerical approximations. Attention then turns to atomic orbitals as the basis of a description of molecular electronic structure; practical molecular wave functions; and a general strategy for performing molecular valence calculations. The final chapter examines the nature of the valence electronic structure by using invariance with respect to transformations among the occupied molecular orbitals and among the atomic orbitals. This text will be of interest to students and practitioners of chemistry, biochemistry, and quantum mechanics.

Book Relativistic Electronic Structure Theory

Download or read book Relativistic Electronic Structure Theory written by and published by Elsevier. This book was released on 2004-03-05 with total page 805 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of relativistic electronic structure theory is generally not part of theoretical chemistry education, and is therefore not covered in most quantum chemistry textbooks. This is due to the fact that only in the last two decades have we learned about the importance of relativistic effects in the chemistry of heavy and superheavy elements. Developments in computer hardware together with sophisticated computer algorithms make it now possible to perform four-component relativistic calculations for larger molecules. Two-component and scalar all-electron relativistic schemes are also becoming part of standard ab-initio and density functional program packages for molecules and the solid state. The second volume of this two-part book series is therefore devoted to applications in this area of quantum chemistry and physics of atoms, molecules and the solid state. Part 1 was devoted to fundamental aspects of relativistic electronic structure theory whereas Part 2 covers more of the applications side. This volume opens with a section on the Chemistry of the Superheavy Elements and contains chapters dealing with Accurate Relativistic Fock-Space Calculations for Many-Electron Atoms, Accurate Relativistic Calculations Including QED, Parity-Violation Effects in Molecules, Accurate Determination of Electric Field Gradients for Heavy Atoms and Molecules, Two-Component Relativistic Effective Core Potential Calculations for Molecules, Relativistic Ab-Initio Model Potential Calculations for Molecules and Embedded Clusters, Relativistic Pseudopotential Calculations for Electronic Excited States, Relativistic Effects on NMR Chemical Shifts, Relativistic Density Functional Calculations on Small Molecules, Quantum Chemistry with the Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory, and Relativistic Solid State Calculations. - Comprehensive publication which focuses on new developments in relativistic quantum electronic structure theory- Many leaders from the field of theoretical chemistry have contributed to the TCC series- Will no doubt become a standard text for scientists in this field.

Book Electronic Structure Calculations for Solids and Molecules

Download or read book Electronic Structure Calculations for Solids and Molecules written by Jorge Kohanoff and published by Cambridge University Press. This book was released on 2006-06-29 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.

Book Atomic and Molecular Physics

    Book Details:
  • Author : R Srivastava
  • Publisher : ALPHA SCIENCE INTERNATIONAL LIMITED
  • Release : 2011-11-14
  • ISBN : 8184875312
  • Pages : 244 pages

Download or read book Atomic and Molecular Physics written by R Srivastava and published by ALPHA SCIENCE INTERNATIONAL LIMITED. This book was released on 2011-11-14 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: ATOMIC AND MOLECULAR PHYSICS: Introduction to Advanced Topics introduces advanced topics of Atomic and Molecular Collision Physics covering Atomic structure calculations, Photoionization of atomic systems, Electron-atom collisions, Ion-atom collisions, Collisions involving exotic particles, Ultracold atoms and Bose-Einstein condensation as well as Atomic data and Plasma diagnostics. This volume is very useful to start research in theoretical and experimental Atomic and Molecular Physics. The book is also helpful to those working in interrelated research areas like Laser physics, Astrophysics and Plasma and Fusion research where such a background of theoretical Atomic Collision Physics is an integral part.

Book Numerical Determination of the Electronic Structure of Atoms  Diatomic and Polyatomic Molecules

Download or read book Numerical Determination of the Electronic Structure of Atoms Diatomic and Polyatomic Molecules written by M. Defranceschi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanical calculations in physics, chemistry and biology are widely recognized as useful interpretative and predictive tools. Unfortunately, they are plagued by unfavorable convergence limitations due to the use of finite linear combinations of basis functions. With the current computer technologies, there is a possible way out to the situation by solving numerically the corresponding wave equations. The present interest and need for numerical determination of electronic structure of atoms, diatomic and poly atomic molecules led us to organize a NATO-ARW devoted to these questions. The aim of the meeting was to provide a review of the state of the art about techniques and applications. The organizing committee consisted of Drs. G. Berthier, P. Claverie, M. Defranceschi, J. Delhalle, H.J. Monkhorst and P. Pyykk6. It was a great sorrow for us to be informed in January 88 of the death of Professor P. Claverie who supported so enthusiastically the idea of having such a meeting organized. The NATO Advanced Research Worshop on : " Numerical Determination of the Electronic Structure of Atoms, Diatomic and Poly atomic Molecules" was held at Versailles (France) from April 17th till April 22th, 1988.

Book Electron Scattering

    Book Details:
  • Author : Colm T. Whelan
  • Publisher : Springer Science & Business Media
  • Release : 2006-01-17
  • ISBN : 0387275673
  • Pages : 342 pages

Download or read book Electron Scattering written by Colm T. Whelan and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.

Book Electron Densities in Molecular and Molecular Orbitals

Download or read book Electron Densities in Molecular and Molecular Orbitals written by J.R. Van Wazer and published by Elsevier. This book was released on 2012-12-02 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron Densities in Molecules and Molecular Orbitals aims to explain the subject of molecular orbitals without having to rely much on its mathematical aspect, making it more approachable to those who are new to quantum chemistry. The book covers topics such as orbitals in quantum-chemical calculations; electronic ionizations and transitions; molecular-orbital change distributions; orbital transformations and calculations not involving orbitals; and electron densities and shapes in atoms and molecules. Also included in the book are the cross-sectional plots of electron densities of compounds such as organic compounds like methane, ethane, and ethylene; monomeric lithium fluoride and monomeric methyl lithium; hydrogen cyanide and methinophosphide; and monomeric borane and diborane. The text is recommended for those who have begun taking an interest in quantum chemistry but do not wish to deal yet with the mathematics part of the subject.