EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Narayanasamy Sabari Arul and published by Springer. This book was released on 2019-07-30 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Book Electronic and Optical Properties of Two Dimensional Transition Metal Dichalcogenide Nanoribbons

Download or read book Electronic and Optical Properties of Two Dimensional Transition Metal Dichalcogenide Nanoribbons written by Santosh Neupane and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional (2D) layered materials, such as transition metal dichalcogenides (TMDs), are the subject of intense research interest as platforms for both developing atomically-thin devices and exploring novel physics. Nanoribbons are intriguing, reduced forms of 2D layered materials. They exhibit more spatial confinement effects and rich edge states than their 2D counterparts, which can result in drastic changes in electronic and optical properties. This dissertation presents an investigation of the electronic structure properties of bent TMDs nanoribbons using density functional theory (DFT) and explores their optical absorption and excitonic states through many-body perturbation GW and BSE (Bethe-Salpeter equation) methods.The band structures, band gaps, and projected spin polarization of semiconducting armchair tungsten diselenide (WSe2) nanoribbons are calculated under various bending curvatures and electron/hole doping using density functional approximations (DFAs). Additionally, optical absorption and excitonic states are analyzed using the many-body perturbation GW-BSE approach. The findings reveal that the band gap of the nanoribbon can be modified from direct to indirect or vice versa under appropriate bending curvatures. Furthermore, doping or bending the nanoribbons with proper curvatures leads to spin polarization anisotropy within the bands around the Fermi level. This suggests their potential utilization in compact and controllable magnetic nanodevices and spintronics. The exciton states exhibit mixed or various spin configurations in the electron and hole pairs, which are controlled by the bending, and hold promise for applications in spin-based quantum information processes. Defects are commonly present in 2D TMD materials and significantly alter their properties. The interaction between edge states and defect states in tungsten disulfide (WS2) nanoribbons with line defects under different bending curvatures is investigated using density functional theory (DFT). The results are compared with quasiparticle GW calculations to gain insights into the limitations of DFAs for band gaps and energies of defect states. The investigations uncover interesting semiconducting-to-metallic phase transitions, indicating potential applications in nano-electronics or molecular electronics. Moreover, optical absorption of the bent and defective nanoribbons is calculated using the many-body GW-BSE approach, revealing a tunable optical spectrum and diverse exciton states in the defective WS2 nanoribbons.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Probing the Response of Two Dimensional Crystals by Optical Spectroscopy

Download or read book Probing the Response of Two Dimensional Crystals by Optical Spectroscopy written by Yilei Li and published by Springer. This book was released on 2015-11-09 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.

Book 2d Inorganic Materials Beyond Graphene

Download or read book 2d Inorganic Materials Beyond Graphene written by C N R Rao and published by World Scientific. This book was released on 2017-08-28 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional materials have had widespread applications in nanoelectronics, catalysis, gas capture, water purification, energy storage and conversion. Initially based around graphene, research has since moved on to looking at alternatives, including transitions metal dichalcogenides, layered topological insulators, metallic mono-chalcogenides, borocarbonitrides and phosphorene.This book provides a review of research in the field of these materials, including investigation into their defects, analysis on hybrid structures focusing on their properties and synthesis, and characterization and applications of 2D materials beyond graphene. It is designed to be a single-point reference for students, teachers and researchers of chemistry and its related subjects, particularly in the field of nanomaterials.

Book Crystallization of Two dimensional Transition Metal Dichalcogenides for Tailored Optical Properties

Download or read book Crystallization of Two dimensional Transition Metal Dichalcogenides for Tailored Optical Properties written by Rachel H. Rai and published by . This book was released on 2019 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two dimensional (2D) semiconducting transition metal dichalcogenides (TMD) are new materials that exhibit unique and useful combinations of physical properties, such as photoluminescence (PL) in the visible to NIR frequencies coupled with mechanical flexibility. Such properties make 2D TMDs attractive candidates for the next generation of compact, unobtrusive, and low-cost opto-electronic technologies. However, the incorporation of 2D TMDs in commercial applications and products is currently limited by the absence of synthesis approaches yielding uniform, large area films with desired properties. Thus, this work encompasses innovative techniques to tailor optical properties of TMD thin films by controlling their area, thickness, grain size, defect density and uniformity during and after processing. These new approaches start with magnetron sputtering of ultra-thin amorphous TMD films on either flexible or rigid substrates. The amorphous precursor films were then subjected to illumination with energy beams to induce crystallization, including laser light, broadband radiation from a xenon lamp, and nanoscale electron beams. Magnetron sputtering was selected as the precursor deposition technique due to the large area capability coupled with low processing temperatures, allowing deposition directly on polymer substrates. Furthermore, modulation of the energy flux to the growing film during magnetron sputtering (by controlling the flux of incident energetic particles) provided an opportunity to control the density of pre-existing nuclei in the amorphous material for an added measure of structural control upon illumination. The structure, composition and optical properties of crystalline 2D TMD materials on flexible and rigid substrates after illumination, were then correlated to the pre-existing amorphous structure and process conditions for selected TMD compositions. Important conclusions from the work include significant insight on the mechanisms of crystallization kinetics, as well as new correlations of structure to optical properties, including a dependence on photoluminescence intensity accompanied by a change in crystal edge density, correlating well to theory. In summary, this work employs various crystallization techniques to understand nucleation and growth of 2D TMD materials, and application of nucleation and growth mechanisms to control optical properties.

Book Semiconductors

Download or read book Semiconductors written by Martin I. Pech-Canul and published by Springer. This book was released on 2019-01-17 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling.

Book Optical Study on Two Dimensional Transition Metal Dichalcogenides

Download or read book Optical Study on Two Dimensional Transition Metal Dichalcogenides written by Bairen Zhu and published by Open Dissertation Press. This book was released on 2017-01-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Optical Study on Two Dimensional Transition Metal Dichalcogenides" by Bairen, Zhu, 朱柏仁, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Atomically thin group-VI transition metal dichalcogenides (TMDC) has been emerging as a family of intrinsic 2-dimensional (2D) crystals with a sizeable bandgap in the visible and near infrared range, satisfying numerous requirements for ultimate electronics and optoelectronics. This intrinsic 2D crystal also provides a perfect platform for physics study in 2D semiconductors. The characteristic inversion symmetry breaking presented in monolayer TMDCs leads to non-zero but contrasting Berry curvatures and orbital magnetic moments at K/K' valleys located at the corners of the first Brillouin zone. These features provide an opportunity to manipulate electrons' additional internal degrees of freedom, namely the valley degree of freedom, making monolayer TMDC a promising candidate for the conceptual valleytronics. Besides, the strong spin-orbit interactions and the subsequent spin-valley coupling demonstrated in 2D TMDCs open potential new routes towards quantum manipulation. In this thesis, I give a brief review on the background and our progress of the physics study in 2D TMDCs (MoS2, WS2) via optical spectroscopy. Particularly, our experimental approach on the excitonic effect, valley dependent circular dichroism, and the spin-valley coupling in monolayer and bilayer TMDCs are elaborated in individual chapters. DOI: 10.5353/th_b5351031 Subjects: Transition metal compounds - Optical properties Chalcogenides - Optical properties

Book 2D Materials for Photonic and Optoelectronic Applications

Download or read book 2D Materials for Photonic and Optoelectronic Applications written by Qiaoliang Bao and published by Woodhead Publishing. This book was released on 2019-10-19 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Materials for Photonic and Optoelectronic Applications introduces readers to two-dimensional materials and their properties (optical, electronic, spin and plasmonic), various methods of synthesis, and possible applications, with a strong focus on novel findings and technological challenges. The two-dimensional materials reviewed include hexagonal boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, black phosphorous and other novel materials. This book will be ideal for students and researchers in materials science, photonics, electronics, nanotechnology and condensed matter physics and chemistry, providing background for both junior investigators and timely reviews for seasoned researchers. - Provides an in-depth look at boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, and more - Reviews key applications for photonics and optoelectronics, including photodetectors, optical signal processing, light-emitting diodes and photovoltaics - Addresses key technological challenges for the realization of optoelectronic applications and comments on future solutions

Book Defects in Two Dimensional Materials

Download or read book Defects in Two Dimensional Materials written by Rafik Addou and published by Elsevier. This book was released on 2022-02-14 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials

Book Supramolecular Chemistry on Surfaces

Download or read book Supramolecular Chemistry on Surfaces written by Neil R. Champness and published by John Wiley & Sons. This book was released on 2022-05-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supramolecular Chemistry on Surfaces 2D Networks and 2D Structures Explore the cutting-edge in 2D chemistry on surfaces and its applications In Supramolecular Chemistry on Surfaces: 2D Networks and 2D Structures, expert chemist Neil R. Champness delivers a comprehensive overview of the rapidly developing field of two-dimensional supramolecular chemistry on surfaces. The book offers explorations of the state-of-the-art in the discipline and demonstrates the potential of the latest advances and the challenges faced by researchers in different areas. The editor includes contributions from leading researchers that address new spectroscopic methods which allow for investigations at a sub-molecular level, opening up new areas of understanding in the field. Included resources also discuss important supramolecular strategies, like hydrogen-bonding, van der Waals interactions, metal-ligand coordination, multicomponent assembly, and more. The book also provides: A thorough introduction to two-dimensional supramolecular chemistry on surfaces Comprehensive explorations of the characterization and interpretation of on-surface chemical reactions studied by ultra-high resolution scanning probe microscopy Practical discussions of complexity in two-dimensional multicomponent assembly, including explorations of coordination bonds and quasicrystalline structures In-depth examinations of covalently bonded organic structures via on-surface synthesis Perfect for polymer chemists, spectroscopists, and materials scientists, Supramolecular Chemistry on Surfaces: 2D Networks and 2D Structures will also earn a place in the libraries of physical and surface chemists, as well as surface physicists.

Book Two Dimensional Semiconductors

Download or read book Two Dimensional Semiconductors written by Jingbo Li and published by John Wiley & Sons. This book was released on 2020-03-10 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-depth overview of two-dimensional semiconductors from theoretical studies, properties to emerging applications! Two-dimensional (2D) materials have attracted enormous attention due to their exotic properties deriving from their ultrathin dimensions. 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus and boron nitride, exhibit versatile optical, electronic, catalytic and mechanical properties, thus can be used in a wide range of applications, including electronics, optoelectronics and optical applications. Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications provides an in-depth view of 2D semiconductors from theoretical studies, properties to applications, taking into account the current state of research and development. It introduces various preparation methods and describes in detail the physical properties of 2D semiconductors including 2D alloys and heterostructures. The covered applications include, but are not limited to, field-effect transistors, spintronics, solar cells, photodetectors, light-emitting diode, sensors and bioelectronics. Highly topical: 2D materials are a rapidly advancing field that attracts increasing attention Concise overview: covers theoretical studies, preparation methods, physical properties, potential applications, the challenges and opportunities Application oriented: focuses on 2D semiconductors that can be used in various applications such as field-effect transistors, solar cells, sensors and bioelectronics Highly relevant: newcomers as well as experienced researchers in the field of 2D materials will benefit from this book Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications is written for materials scientists, semiconductor and solid state physicists, electrical engineers, and readers working in the semiconductor industry.

Book Optical Properties Of Graphene

Download or read book Optical Properties Of Graphene written by Rolf Binder and published by World Scientific. This book was released on 2016-11-11 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive state-of-the-art overview of the optical properties of graphene. During the past decade, graphene, the most ideal and thinnest of all two-dimensional materials, has become one of the most widely studied materials. Its unique properties hold great promise to revolutionize many electronic, optical and opto-electronic devices. The book contains an introductory tutorial and 13 chapters written by experts in areas ranging from fundamental quantum mechanical properties to opto-electronic device applications of graphene.