Download or read book Electron Transport in Quantum Dots written by Jonathan P. Bird and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the debate of critical issues in this still developing field. In this matter, I have been assisted greatly by the excellent series of articles provided by the different authors, who are widely recognized as some of the leaders in this vital area of research.
Download or read book Quantum Dots written by Alexander Tartakovskii and published by Cambridge University Press. This book was released on 2012-07-19 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of cutting-edge solid state research, focusing on quantum dot nanostructures, for graduate students and researchers.
Download or read book Mesoscopic Electron Transport written by Lydia L. Sohn and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ongoing developments in nanofabrication technology and the availability of novel materials have led to the emergence and evolution of new topics for mesoscopic research, including scanning-tunnelling microscopic studies of few-atom metallic clusters, discrete energy level spectroscopy, the prediction of Kondo-type physics in the transport properties of quantum dots, time dependent effects, and the properties of interacting systems, e.g. of Luttinger liquids. The overall understanding of each of these areas is still incomplete; nevertheless, with the foundations laid by studies in the more traditional systems there is no doubt that these new areas will advance mesoscopic electron transport to a new phenomenological level, both experimentally and theoretically. Mesoscopic Electron Transport highlights selected areas in the field, provides a comprehensive review of such systems, and also serves as an introduction to the new and developing areas of mesoscopic electron transport.
Download or read book Colloidal Quantum Dot Optoelectronics and Photovoltaics written by Gerasimos Konstantatos and published by Cambridge University Press. This book was released on 2013-11-07 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.
Download or read book Quantum Dot Devices written by Zhiming M. Wang and published by Springer Science & Business Media. This book was released on 2012-05-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.
Download or read book Physics of Quantum Electron Devices written by Federico Capasso and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.
Download or read book Quantum dot Based Light emitting Diodes written by Morteza Sasani Ghamsari and published by BoD – Books on Demand. This book was released on 2017-10-25 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum dot-based light emitting diodes were assigned to bringing together the latest and most important progresses in light emitting diode (LED) technologies. In addition, they were dedicated to gain the perspective of LED technology for all of its advancements and innovations due to the employment of semiconductor nanocrystals. Highly selective, the primary aim was to provide a visual source for high-urgency work that will define the future directions relating to the organic light emitting diode (OLED), with the expectation for lasting scientific and technological impact. The editor hopes that the chapters verify the realization of the mentioned aims that have been considered for editing of this book. Due to the rapidly growing OLED technology, we wish this book to be useful for any progress that can be achieved in future.
Download or read book Nonlinear Dynamics of Nanosystems written by Günter Radons and published by John Wiley & Sons. This book was released on 2010-01-12 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discussion of the fundamental changes that occur when dynamical systems from the fields of nonlinear optics, solids, hydrodynamics and biophysics are scaled down to nanosize. The authors are leading scientists in the field and each of their contributions provides a broader introduction to the specific area of research. In so doing, they include both the experimental and theoretical point of view, focusing especially on the effects on the nonlinear dynamical behavior of scaling, stochasticity and quantum mechanics. For everybody working on the synthesis and integration of nanoscopic devices who sooner or later will have to learn how to deal with nonlinear effects.
Download or read book Quantum Computing in Solid State Systems written by Berardo Ruggiero and published by Springer Science & Business Media. This book was released on 2006-05-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing for information processing devices; in particular observations of quantum behavior in several solid state systems are presented. The complementary theoretical contributions provide models of minimizing decoherence in the different systems. Most recent theoretical and experimental results on macroscopic quantum coherence of mesoscopic systems, as well as the realization of solid-state qubits and quantum gates are discussed. Particular attention is given to coherence effects in Josephson devices. Other solid state systems---including quantum dots, optical, ion, and spin devices---are also discussed.
Download or read book Semiconductor Quantum Dots written by Y. Masumoto and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.
Download or read book Cadmium Telluride Quantum Dots written by John Donegan and published by CRC Press. This book was released on 2013-12-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, semiconductor quantum dots—small colloidal nanoparticles—have garnered a great deal of scientific interest because of their unique properties. Among nanomaterials, CdTe holds special technological importance as the only known II–VI material that can form conventional p–n junctions. This makes CdTe very important for the development of novel optoelectronic devices such as light-emitting diodes, solar cells, and lasers. Moreover, the demand for water-compatible light emitters and the most common biological buffers give CdTe quantum dots fields a veritable edge in biolabeling and bioimaging. Cadmium Telluride Quantum Dots: Advances and Applications focuses on CdTe quantum dots and addresses their synthesis, assembly, optical properties, and applications in biology and medicine. It makes for a very informative reading for anyone involved in nanotechnology and will also benefit those scientists who are looking for a comprehensive account on the current state of quantum dot–related research.
Download or read book CFN Lectures on Functional Nanostructures written by Kurt Busch and published by Springer Science & Business Media. This book was released on 2005-01-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of lectures from the first Summer School organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of lectures. This is reflected by both the selection of topics addressed in the present volume as well as the tutorial aspect of the contributions.
Download or read book Dissipative Quantum Mechanics of Nanostructures written by Andrei D. Zaikin and published by CRC Press. This book was released on 2019-05-24 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.
Download or read book Physical Models for Quantum Dots written by Jean-Pierre Leburton and published by CRC Press. This book was released on 2021-12-23 with total page 991 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 1990s, quantum dots have become an integral part of research in solid state physics for their fundamental properties that mimic the behavior of atoms and molecules on a larger scale. They also have a broad range of applications in engineering and medicines for their ability to tune their electronic properties to achieve specific functions. This book is a compilation of articles that span 20 years of research on comprehensive physical models developed by their authors to understand the detailed properties of these quantum objects and to tailor them for specific applications. Far from being exhaustive, this book focuses on topics of interest for solid state physicists, materials scientists, engineers, and general readers, such as quantum dots and nanocrystals for single-electron charging with applications in memory devices, quantum dots for electron-spin manipulation with applications in quantum information processing, and finally self-assembled quantum dots for applications in nanophotonics.
Download or read book Nanotechnology written by Gregory L. Timp and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of the machinery and science of the nanometer scale. Its twenty-two contributing authors, drawn from many different disciplines including atomic physics, microelectronics, polymer chemistry, and biophysics, delineate the course of current research and articulate a vision for the development of the nanometer frontiers in electronics, mechanics, chemistry, magnetics, materials, and biology. They reveal a world thirty years hence where motors are smaller than the diameter of a human hair; where single-celled organisms are programmed to fabricate materials with nanometer precision; where single atoms are used for computation, and where quantum chaos is the norm. Aimed at the level of at least a junior- or senior- level undergraduate in biology, chemistry, physics, or engineering.
Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
Download or read book Semiconductor Nanocrystals written by Alexander L. Efros and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.