EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures

Download or read book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures written by Victor A. Drits and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decision of Springer-Verlag to publish this book in English came as a pleasant surprise. The fact is that I started writing the first version of the book back in 1978. I wished to attract attention to potentialities inherent in selected-area electron diffraction (SAED) which, for various reasons, were not being put to use. By that time, I had at my disposal certain structural data on natural and synthetic minerals obtained using SAED and high-resolution electron microscopy (HREM), and this stimulated my writing this book. There were several aspects concerning these data that I wished to emphasize. First, it was mostly new and understudied minerals that possess the peculiar structural features studied by SAED and HREM. This could interest mineralogists, crystallo chemists, and crystallographers. Second, the results obtained indi cated that, under certain conditions, SAED could be an effective, and sometimes the only possible, method for structure analysis of minerals. This inference was of primary importance, since fine dispersion and poor crystallinity of numerous natural and synthe tic minerals makes their structure study by conventional diffrac tion methods hardly possible. Third, it was demonstrated that in many cases X-ray powder diffraction analysis of dispersed miner als ought to be combined with SAED and local energy dispersion analysis. This was important, since researchers in structural min eralogy quite often ignored, and still ignore even the simplest in formation which is readily available from geometrical analysis of SAED patterns obtained from microcrystals.

Book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures

Download or read book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures written by Victor A Drits and published by . This book was released on 1987-07-08 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures

Download or read book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures written by Victor A. Drits and published by Springer. This book was released on 1987-07-08 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decision of Springer-Verlag to publish this book in English came as a pleasant surprise. The fact is that I started writing the first version of the book back in 1978. I wished to attract attention to potentialities inherent in selected-area electron diffraction (SAED) which, for various reasons, were not being put to use. By that time, I had at my disposal certain structural data on natural and synthetic minerals obtained using SAED and high-resolution electron microscopy (HREM), and this stimulated my writing this book. There were several aspects concerning these data that I wished to emphasize. First, it was mostly new and understudied minerals that possess the peculiar structural features studied by SAED and HREM. This could interest mineralogists, crystallo chemists, and crystallographers. Second, the results obtained indi cated that, under certain conditions, SAED could be an effective, and sometimes the only possible, method for structure analysis of minerals. This inference was of primary importance, since fine dispersion and poor crystallinity of numerous natural and synthe tic minerals makes their structure study by conventional diffrac tion methods hardly possible. Third, it was demonstrated that in many cases X-ray powder diffraction analysis of dispersed miner als ought to be combined with SAED and local energy dispersion analysis. This was important, since researchers in structural min eralogy quite often ignored, and still ignore even the simplest in formation which is readily available from geometrical analysis of SAED patterns obtained from microcrystals.

Book Minerals and Reactions at the Atomic Scale

Download or read book Minerals and Reactions at the Atomic Scale written by Peter R. Buseck and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 27 of Reviews in Mineralogy provides a background to the TEM as a mineralogical tool, to give an introduction to the principles underlying its operation, and to explore mineralogical applications and ways in which electron microscopy can augment our knowledge of mineral structures, chemistry, and origin. Much time will be devoted to mineralogical applications. It provides sufficient information to allow mineralogists and petrologists to have an informed understanding of the data produced by transmission electron microscopy and to have enough knowledge and experience to undertake initial studies on their own. The opening chapters cover the principles of electron microscopy and chemical analysis using the TEM; while the following chapters consider mineralogical, petrological, and geochemical applications and their implications, for both low- and high-temperature geological environments. The Mineralogical Society of America sponsored a short courses in conjunction with their annual meetings with the Geological Society of America, and this volume represents the proceedings of the eighteenth in the sequence. This TEM course was convened October 23-25, 1992, at Hueston Woods State Park, College Comer, Ohio.

Book Electron Microscopy in Mineralogy

Download or read book Electron Microscopy in Mineralogy written by P.E. Champness and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last five years transmission electron microscopy (TEM) has added numerous important new data to mineralogy and has considerably changed its outlook. This is partly due to the fact that metallurgists and crystal physicists having solved most of the structural and crystallographic problems in metals have begun to show a widening interest in the much more complicated structures of minerals, and partly to recent progress in experimental techniques, mainly the availability of ion-thinning devices. While electron microscopists have become increasingly interested in minerals (judging from special symposia at recent meetings such as Fifth European Congress on Electron microscopy, Man chester 1972; Eight International Congress on Electron Microscopy, Canberra 1974) mineralogists have realized advantages of the new technique and applied it with increasing frequency. In an effort to coordinate the growing quantity of research, electron microscopy sessions have been included in meetings of mineralogists (e. g. Geological Society of America, Minneapolis, 1972, American Crystallographic Association, Berkeley, 1974). The tremendous response for the TEM symposium which H. -R. Wenk and G. Thomas organized at the Berkeley Conference of the American Crystallographic Association formed the basis for this book. It appeared useful at this stage to summarize the achievements of electron microscopy, scattered in many different journals in several different fields and present them to mineralogists. A group of participants as the Berkeley symposium formed an Editorial Committee and outlined the content of this book.

Book Electron Crystallography

    Book Details:
  • Author : D. Dorset
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 9401589712
  • Pages : 447 pages

Download or read book Electron Crystallography written by D. Dorset and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: The re-emergent field of quantitative electron crystallography is described by some of its most eminent practitioners. They describe the theoretical framework for electron scattering, specimen preparation, experimental techniques for optimum data collection, the methodology of structure analysis and refinement, and a range of applications to inorganic materials (including minerals), linear polymers, small organic molecules (including those used in nonlinear optical devices), incommensurately modulated structures (including superconductors), alloys, and integral membrane proteins. The connection between electron crystallography and X-ray crystallography is clearly defined, especially in the utilisation of the latest methods for direct determination of crystallographic phases, as well as the unique role of image analysis of high-resolution electron micrographs for phase determination. Even the aspect of multiple beam dynamic diffraction (once dreaded because it was thought to preclude ab initio analysis) is considered as a beneficial aid for symmetry determination as well as the elucidation of crystallographic phases, and as a criterion for monitoring the progress of structure refinement. Whereas other texts have hitherto preferentially dealt with the analysis of electron diffraction and image data from thin organic materials, this work discusses - with considerable optimism - the prospects of looking at `harder' materials, composed of heavier atoms. Audience: Could be used with profit as a graduate-level course on electron crystallography. Researchers in the area will find a statement of current progress in the field.

Book Electron Crystallography

Download or read book Electron Crystallography written by D. Dorset and published by Springer. This book was released on 1997-11-30 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The re-emergent field of quantitative electron crystallography is described by some of its most eminent practitioners. They describe the theoretical framework for electron scattering, specimen preparation, experimental techniques for optimum data collection, the methodology of structure analysis and refinement, and a range of applications to inorganic materials (including minerals), linear polymers, small organic molecules (including those used in nonlinear optical devices), incommensurately modulated structures (including superconductors), alloys, and integral membrane proteins. The connection between electron crystallography and X-ray crystallography is clearly defined, especially in the utilisation of the latest methods for direct determination of crystallographic phases, as well as the unique role of image analysis of high-resolution electron micrographs for phase determination. Even the aspect of multiple beam dynamic diffraction (once dreaded because it was thought to preclude ab initio analysis) is considered as a beneficial aid for symmetry determination as well as the elucidation of crystallographic phases, and as a criterion for monitoring the progress of structure refinement. Whereas other texts have hitherto preferentially dealt with the analysis of electron diffraction and image data from thin organic materials, this work discusses - with considerable optimism - the prospects of looking at `harder' materials, composed of heavier atoms. Audience: Could be used with profit as a graduate-level course on electron crystallography. Researchers in the area will find a statement of current progress in the field.

Book Electron Crystallography

    Book Details:
  • Author : Thomas E. Weirich
  • Publisher : Springer Science & Business Media
  • Release : 2006-08-18
  • ISBN : 1402039204
  • Pages : 533 pages

Download or read book Electron Crystallography written by Thomas E. Weirich and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to reveal the intimate structure of samples with high accuracy but on much smaller samples than have ever been investigated by X-ray diffraction. As a tribute to these tremendous recent achievements, this NATO Advanced Study Institute was devoted to the novel approaches of electron crystallography for structure determination of nanosized materials.

Book Electron Diffraction Analysis of Clay Mineral Structures

Download or read book Electron Diffraction Analysis of Clay Mineral Structures written by B. B. Zvyagin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a method of structure analysis, electron diffraction has its own spe cial possibilities and advantages in comparison to the X -ray method for the study of finely dispersed minerals with layer or pseudolayer structures. How ever, possibly because of the prior existence of the X-ray method, which found universal application in different fields and attracted the main efforts of spe cialists, electron diffraction has been unevenly disseminated and developed in different countries. In particular, the oblique texture method, which gives very complete and detailed structural information, has been mainly used in the Soviet Union, where electron-diffraction cameras specially suited to the method have been constructed. In other countries, studies have been made of micro-single crystals, because these studies could be carried out with existing electron microscopes. It should be recognized that the scale of distribution and use attained by electron-diffraction methods, at present limited by exist ing experimental conditions. is more than justified by the value of the results which may be obtained by their aid. The author hopes that the present book will give the reader a fuller idea of the valuable advantages of the method, and of the structural crystallography picture which has been built up for clay minerals, and layer silicates in general, from electron-diffraction data. The time between the appearance of this book and that of the Russian edition has been comparatively short.

Book Transmission Electron Microscopy of Minerals and Rocks

Download or read book Transmission Electron Microscopy of Minerals and Rocks written by Alex C. McLaren and published by Cambridge University Press. This book was released on 1991-04-26 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the principles of transmission electron microscopy, written specifically for geologists and mineralogists.

Book Electron Diffraction in the Transmission Electron Microscope

Download or read book Electron Diffraction in the Transmission Electron Microscope written by P.E. Champness and published by Garland Science. This book was released on 2020-08-13 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to electron diffraction in the transmission electron microscope (TEM). Case studies and examples are used to provide an invaluable introduction to the subject for those new to the technique. The book explains the basic methods used to obtain diffraction patterns with the TEM. The numerous illustrations aid the understanding of the conclusions reached.

Book Minerals at the Nanoscale

    Book Details:
  • Author : F. Nieto
  • Publisher : The Mineralogical Society of Great Britain and Ireland
  • Release : 2013-05-24
  • ISBN : 0903056348
  • Pages : 456 pages

Download or read book Minerals at the Nanoscale written by F. Nieto and published by The Mineralogical Society of Great Britain and Ireland. This book was released on 2013-05-24 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The editors have gathered in this book, reviews of past and current studies of mineral groups that have played important roles in geology, environmental science and health science. The various chapters cover the application of TEM and related techniques to: mineral groups in which TEM investigations have been extensive and crucial to the understanding of their mineralogy, namely pyriboles, serpentines, clays, micas and other metamorphic phyllosilicates, oxides and oxyhydroxides, sulfides and carbonates. Some research fields for which TEM is particularly suitable and which have produced significant advances, in particular, are inclusions and traces, extraterrestrial material, deformation processes, non-stoichiometry and superstructures, and biominerals. Nowadays, we are witnessing the push for the improvement of detectors for imaging (direct detection of electrons) and X-rays (silicon drift detectors and annular high solid-angle of collection detectors), the development of new support materials (e.g. graphene) and liquid cells for TEMs. Most of these new technologies have not yet been applied to mineralogical problems but we hope they will be in the near future.

Book Electron diffraction Analysis of Clay Mineral Structures

Download or read book Electron diffraction Analysis of Clay Mineral Structures written by Boris Borisovich Zvi͡agin and published by . This book was released on 1967 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Uniting Electron Crystallography and Powder Diffraction

Download or read book Uniting Electron Crystallography and Powder Diffraction written by Ute Kolb and published by Springer. This book was released on 2012-12-20 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination. This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of disciplines and materials stretching from archeometry to zeolites. As such, it is a comprehensive and valuable resource for those wishing to gain an understanding of the broad applicability of these two rapidly developing fields.

Book The Electron Microscope in the Study of Minerals and Ceramics

Download or read book The Electron Microscope in the Study of Minerals and Ceramics written by Joseph J. Comer and published by . This book was released on 1959 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past several years some very important advances in electron microscopy have been made in instrument design and performance as well as in specimen preparation techniques. The resulting improvement in resolution has opened up a new pattern of study, with greater emphasis now being placed on fine structural details which were not able to be resolved in earlier studies. With some of the new microscopes a resolving power as low as 8 Å can be obtained in direct observations of the specimen, while the lowest possible resolution with a replica technique is about 20 to 30 Å. The latter appears to be limited chiefly by the structure of the shadowing metals. With the development of a new replica technique made possible with Bradley's method of forming evaporated carbon films (1), particular attention is being paid to fine structure in clay minerals, glasses, and other ceramic materials. The examination of bulk clays has revealed details that are important in attempting to define the natural state of the mineral and has helped to provide logical explanations for some of the physical and chemical properties of importance when they are used as catalysts and in the manufacture of certain products in which clays play an important part. Surface details on glasses show fracture paths, liquid immiscibility, location and size of ucleating agents, weathering effects, and the effects of chemical surface treatments. In the study of ceramic bodies, electron micrographs of fractured specimens show how surface topography is related to particle size of the raw clay, the presence of impurities, and the firing temperature. This information has been helpful in basic studies of the formation of high-temperature phases in fired clays and has provided information on structural development which may be correlated with properties of the test specimens. Replica studies of other minerals have also been carried out, including studies of structure in crystals grown from solutions containing added impurities. Direct examinations of clays and other minerals are made for the determination of particle size distributions, the determination of the morphology of individual particles, or the determination of the state of aggregation of a specimen. The preparation of specimens for direct examination usually takes less time than that required for replica studies and under normal conditions permits the use of the ultimate resolving power of the instrument. By a simple selection of proper lenses, the electron microscope can now be converted readily for electron diffraction studies using an aperture system which permits one to "select" diffraction patterns from areas of over 30? down to less than 2? in diameter. One of its important uses is in the identification of small quantities of impurities in samples which by X-ray diffraction may appear to be "pure." It is used also in the study of single crystals to obtain information on unit-cell parameters of compounds whose crystal size is so small as to preclude single crystal X-ray analysis.

Book Topics in Electron Diffraction and Microscopy of Materials

Download or read book Topics in Electron Diffraction and Microscopy of Materials written by Peter. B Hirsch and published by CRC Press. This book was released on 1999-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Electron Diffraction and Microscopy of Materials celebrates the retirement of Professor Michael Whelan from the University of Oxford. Professor Whelan taught many of today's heads of department and was a pioneer in the development and use of electron microscopy. His collaborators and colleagues, each one of whom has made important advances in the use of microscopy to study materials, have contributed to this cohesive work. The book provides a useful overview of current applications for selected electron microscope techniques that have become important and widespread in their use for furthering our understanding of how materials behave. Linked through the dynamical theory of electron diffraction and inelastic scattering, the topics discussed include the history and impact of electron microscopy in materials science, weak-beam techniques for problem solving, defect structures and dislocation interactions, using beam diffraction patterns to look at defects in structures, obtaining chemical identification at atomic resolution, theoretical developments in backscattering channeling patterns, new ways to look at atomic bonds, using numerical simulations to look at electronic structure of crystals, RHEED observations for MBE growth, and atomic level imaging applications.