EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theory and Computation of Electromagnetic Fields

Download or read book Theory and Computation of Electromagnetic Fields written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-08-10 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Book Dual surface Magnetic  and Electric field Integral Equations for Bodies of Revolution in Electromagnetic Scattering

Download or read book Dual surface Magnetic and Electric field Integral Equations for Bodies of Revolution in Electromagnetic Scattering written by James L. Schmitz and published by . This book was released on 1996 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Application of Integral Equation and Finite difference Methods to Electromagnetic Scattering by Two dimensional and Body of Revolution Geometries

Download or read book Application of Integral Equation and Finite difference Methods to Electromagnetic Scattering by Two dimensional and Body of Revolution Geometries written by James Joseph Kattoor and published by . This book was released on 1990 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theoretical and numerical studies of electromagnetic scattering and radiation from perfectly conducting as well as dielectric bodies are of great importance in the design of various systems, such as airborne targets and antennas. This thesis is an attempt to investigate integral equation and partial differential equation techniques as tools for numerical solution of such problems. These techniques are analyzed and some improvements to existing methods are presented. Some scattering problems involving two-dimensional and body of revolution geometries are solved using these techniques to demonstrate their capabilities and to point out their limitations. The first topic that this thesis addresses is the method of moments technique. To demonstrate the techniques developed, electromagnetic scattering from perfectly conducting as well as dielectric bodies of revolution is considered. There are two major issues addressed in this thesis, in this context. First, the use of quasi-entire-domain basis functions, as an alternative to the more traditional sub-sectional basis functions, is considered. It is shown that using the quasi-entire-domain basis functions results in a reduction in the size of the matrix that needs to be solved. The second major topic that Chapter 2 considers is the problem of electromagnetic scattering from layered and partially coated bodies of revolution. The formulation used to solve these problems as well as some results, are presented. The partial differential equation technique that this thesis considers is the finite-difference method. Chapter 3 discusses the finite-difference method in the frequency domain, while Chapter 4 focuses on the solution of Maxwell's equations in the time domain. Chapter 3 solves the problem of scattering by a conducting body of revolution using the finite-difference method in the frequency domain. The procedure outlined uses the coupled azimuthal potentials introduced by Morgan, Chang, and Mei (20) to obtain two coupled partial differential equations. These equations are then solved over a domain discretized using a boundary-fitted curvilinear coordinate system. The main contribution of this thesis in this respect is the application of the boundary-fitted curvilinear coordinate system to this class of problems. It is demonstrated that using this system eliminates the need for using the staircase approximation that is typically required in the finite-difference methods. Chapter 4 focuses on circumventing the problem of staircase approximation that is traditionally used to model material boundaries in finite-difference time-domain algorithms. In this context, two methods are presented. The first one, referred to in this thesis as the modified stencil approach, allows the use of arbitrarily-shaped quadrilateral grids. The second is similar to the boundary-fitted curvilinear coordinate approach presented in Chapter 3. The methods are compared and contrasted, and the advantages and disadvantages of each method are pointed out.

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Numerical Computation of Electromagnetic Scattering by Inhomogeneous Dielectric Bodies of Revolution

Download or read book Numerical Computation of Electromagnetic Scattering by Inhomogeneous Dielectric Bodies of Revolution written by Michael Allen Morgan and published by . This book was released on 1976 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Solution for Electromagnetic Scattering Using the Dual surface Magnetic field Integral Equation for Bodies of Revolution

Download or read book Efficient Solution for Electromagnetic Scattering Using the Dual surface Magnetic field Integral Equation for Bodies of Revolution written by James L. Schmitz and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Higher order Finite Element boundary Integral Method for Electromagnetic Scattering and Radiation from Bodies of Revolution

Download or read book A Higher order Finite Element boundary Integral Method for Electromagnetic Scattering and Radiation from Bodies of Revolution written by Eric Alan Dunn and published by . This book was released on 2005 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Masters Theses in the Pure and Applied Sciences

Download or read book Masters Theses in the Pure and Applied Sciences written by Wade H. Shafer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 32 (thesis year 1987) a total of 12,483 theses titles from 22 Canadian and 176 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 32 reports theses submitted in 1987, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.

Book Electromagnetic Scattering by Conducting by Bodies of Revolution   Solution Using Sub Domain and Entire Domain Basis Functions

Download or read book Electromagnetic Scattering by Conducting by Bodies of Revolution Solution Using Sub Domain and Entire Domain Basis Functions written by and published by . This book was released on 1988 with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the problem of electromagnetic scattering of a plane wave incident on a conducting body of revolution is considered. The body is assumed to be situated in infinite homogeneous space. The problem is solved using the method of moments. Use of two different types of expansion and testing functions, namely, sub-domain type and entire-domain type is considered. Results obtained using sub-domain pulse functions and entire-domain Gaussian functions are presented. The relative advantages and disadvantages of each type of basis functions is discussed. Keywords: Electromagnetic scattering, Method of moments, Bodies of revolution, Entire domain functions, Subdomain functions.

Book Efficient Solution for Electromagnetic Scattering Using the Dual surface Magnetic field Integral Equation for Bodies of Revolution

Download or read book Efficient Solution for Electromagnetic Scattering Using the Dual surface Magnetic field Integral Equation for Bodies of Revolution written by James L. Schmitz and published by . This book was released on 1995 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources

Download or read book Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources written by Adrian Doicu and published by Academic Press. This book was released on 2000-07-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet

Book Masters Abstracts International

Download or read book Masters Abstracts International written by and published by . This book was released on 1988 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scattering of Electromagnetic Waves

Download or read book Scattering of Electromagnetic Waves written by Leung Tsang and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the second volume, Numerical Simulations, Leung Tsang (University of Washington) Jin Au Kong (MIT), Kung-Hau Ding (Air Force Research Lab), and Chi On Ao (MIT) cover: * Layered media simulations * Rough surface and volume scattering simulations * Dense media models and simulations * Electromagnetic scattering by discrete scatterers and a buried object * Scattering by vertical cylinders above a surface * Electromagnetic waves scattering by vegetation * Computational methods and programs used for performing various simulations