EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electromagnetic Analysis and Design in Magnetic Resonance Imaging

Download or read book Electromagnetic Analysis and Design in Magnetic Resonance Imaging written by Jianming Jin and published by Routledge. This book was released on 2018-02-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.

Book Electromagnetic Analysis and Design in Magnetic Resonance Imaging

Download or read book Electromagnetic Analysis and Design in Magnetic Resonance Imaging written by Jian-Ming Jin and published by . This book was released on 1999 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI as well as electrical engineers seeking a better understanding of the hardware for an MRI system.

Book Electromagnetic Analysis and Design in Magnetic Resonance Imaging

Download or read book Electromagnetic Analysis and Design in Magnetic Resonance Imaging written by Jianming Jin and published by Routledge. This book was released on 2018-02-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.

Book Theory and Computation of Electromagnetic Fields

Download or read book Theory and Computation of Electromagnetic Fields written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-09-15 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Book Magnetic Resonance Technology

Download or read book Magnetic Resonance Technology written by Andrew G Webb and published by Royal Society of Chemistry. This book was released on 2016-05-11 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic resonance systems are used in almost every academic and industrial chemistry, physics and biochemistry department, as well as being one of the most important imaging modalities in clinical radiology. The design of such systems has become increasingly sophisticated over the years. Static magnetic fields increase continuously, large-scale arrays of receive elements are now ubiquitous in clinical MRI, cryogenic technology has become commonplace in high resolution NMR and is expanding rapidly in preclinical MRI, specialized high strength magnetic field gradients have been designed for studying the human connectome, and the commercial advent of ultra-high field human imaging has required new types of RF coils and static shim coils together with extensive electromagnetic simulations to ensure patient safety. This book covers the hardware and engineering that constitutes a magnetic resonance system, whether that be a high-resolution liquid or solid state system for NMR spectroscopy, a preclinical system for imaging animals or a clinical system used for human imaging. Written by a team of experts in the field, this book provides a comprehensive and instructional look at all aspects of current magnetic resonance technology, as well as outlooks for future developments.

Book Electromagnetics in Magnetic Resonance Imaging

Download or read book Electromagnetics in Magnetic Resonance Imaging written by Christopher M. Collins and published by Morgan & Claypool Publishers. This book was released on 2016-03-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.

Book Magnetic Resonance Imaging

Download or read book Magnetic Resonance Imaging written by Robert W. Brown and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Ultra High Field Magnetic Resonance Imaging

Download or read book Ultra High Field Magnetic Resonance Imaging written by Pierre-Marie Robitaille and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation for understanding the function and dynamics of biological systems is not only knowledge of their structure, but the new methodologies and applications used to determine that structure. This volume in Biological Magnetic Resonance emphasizes the methods that involve Ultra High Field Magnetic Resonance Imaging. It will interest researchers working in the field of imaging.

Book Antenna and Sensor Technologies in Modern Medical Applications

Download or read book Antenna and Sensor Technologies in Modern Medical Applications written by Yahya Rahmat-Samii and published by John Wiley & Sons. This book was released on 2021-03-16 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the theory and recent development in the medical use of antenna technology Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.

Book Magnetic Resonance Imaging

Download or read book Magnetic Resonance Imaging written by Vadim Kuperman and published by Elsevier. This book was released on 2000-03-15 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. Clear progression from fundamental physical principles of NMR to MRI and its applications Extensive discussion of image acquisition and reconstruction of MRI Discussion of different mechanisms of MR image contrast Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength In-depth consideration of artifacts in MR images Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging Qualitative discussion combined with mathematical description of MR techniques for imaging flow

Book Compendium On Electromagnetic Analysis   From Electrostatics To Photonics  Fundamentals And Applications For Physicists And Engineers  In 5 Volumes

Download or read book Compendium On Electromagnetic Analysis From Electrostatics To Photonics Fundamentals And Applications For Physicists And Engineers In 5 Volumes written by and published by World Scientific. This book was released on 2020-06-15 with total page 2064 pages. Available in PDF, EPUB and Kindle. Book excerpt: The five-volume set may serve as a comprehensive reference on electromagnetic analysis and its applications at all frequencies, from static fields to optics and photonics. The material includes micro- and nanomagnetics, the new generation of electric machines, renewable energy, hybrid vehicles, low-noise motors; antennas and microwave devices, plasmonics, metamaterials, lasers, and more.Written at a level accessible to both graduate students and engineers, Electromagnetic Analysis is a comprehensive reference, covering methods and applications at all frequencies (from statics to optical). Each volume contains pedagogical/tutorial material of high archival value as well as chapters on state-of-the-art developments.

Book Magnetic Resonance Imaging

Download or read book Magnetic Resonance Imaging written by Robert W. Brown and published by John Wiley & Sons. This book was released on 2014-05-02 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.

Book Numerical and Analytical Methods in Electromagnetics

Download or read book Numerical and Analytical Methods in Electromagnetics written by Hristos T. Anastassiu and published by MDPI. This book was released on 2021-03-19 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.

Book RF Coils for MRI

    Book Details:
  • Author : J. Thomas Vaughan
  • Publisher : John Wiley & Sons
  • Release : 2012-12-19
  • ISBN : 1118590457
  • Pages : 34 pages

Download or read book RF Coils for MRI written by J. Thomas Vaughan and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. To date there is no single reference aimed at teaching the art of applications guided coil design for use in MRI. This RF Coils for MRI handbook is intended to become this reference. Heretofore, much of the know-how of RF coil design is bottled up in various industry and academic laboratories around the world. Some of this information on coil technologies and applications techniques has been disseminated through the literature, while more of this knowledge has been withheld for competitive or proprietary advantage. Of the published works, the record of technology development is often incomplete and misleading, accurate referencing and attribution assignment being tantamount to admission of patent infringement in the commercial arena. Accordingly, the literature on RF coil design is fragmented and confusing. There are no texts and few courses offered to teach this material. Mastery of the art and science of RF coil design is perhaps best achieved through the learning that comes with a long career in the field at multiple places of employment...until now. RF Coils for MRI combines the lifetime understanding and expertise of many of the senior designers in the field into a single, practical training manual. It informs the engineer on part numbers and sources of component materials, equipment, engineering services and consulting to enable anyone with electronics bench experience to build, test and interface a coil. The handbook teaches the MR system user how to safely and successfully implement the coil for its intended application. The comprehensive articles also include information required by the scientist or physician to predict respective experiment or clinical performance of a coil for a variety of common applications. It is expected that RF Coils for MRI becomes an important resource for engineers, technicians, scientists, and physicians wanting to safely and successfully buy or build and use MR coils in the clinic or laboratory. Similarly, this guidebook provides teaching material for students, fellows and residents wanting to better understand the theory and operation of RF coils. Many of the articles have been written by the pioneers and developers of coils, arrays and probes, so this is all first hand information! The handbook serves as an expository guide for hands-on radiologists, radiographers, physicians, engineers, medical physicists, technologists, and for anyone with interests in building or selecting and using RF coils to achieve best clinical or experimental results. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here

Book Nuclear Magnetic Resonance

    Book Details:
  • Author : Navin Khaneja
  • Publisher :
  • Release : 2020-04-08
  • ISBN : 1838804196
  • Pages : 147 pages

Download or read book Nuclear Magnetic Resonance written by Navin Khaneja and published by . This book was released on 2020-04-08 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magnetic Resonance Imaging of the Brain and Spine

Download or read book Magnetic Resonance Imaging of the Brain and Spine written by Scott W. Atlas and published by Lippincott Williams & Wilkins. This book was released on 2009 with total page 1976 pages. Available in PDF, EPUB and Kindle. Book excerpt: Established as the leading textbook on imaging diagnosis of brain and spine disorders, Magnetic Resonance Imaging of the Brain and Spine is now in its Fourth Edition. This thoroughly updated two-volume reference delivers cutting-edge information on nearly every aspect of clinical neuroradiology. Expert neuroradiologists, innovative renowned MRI physicists, and experienced leading clinical neurospecialists from all over the world show how to generate state-of-the-art images and define diagnoses from crucial clinical/pathologic MR imaging correlations for neurologic, neurosurgical, and psychiatric diseases spanning fetal CNS anomalies to disorders of the aging brain. Highlights of this edition include over 6,800 images of remarkable quality, more color images, and new information using advanced techniques, including perfusion and diffusion MRI and functional MRI. A companion Website will offer the fully searchable text and an image bank.