Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.
Download or read book Dye Sensitized Solar Cells written by Masoud Soroush and published by Academic Press. This book was released on 2019-02-23 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dye-Sensitized Solar Cells: Mathematical Modelling and Materials Design and Optimization presents the latest information as edited from leaders in the field. It covers advances in DSSC design, fabrication and mathematical modelling and optimization, providing a comprehensive coverage of various DSSC advances that includes different system scales, from electronic to macroscopic level, and a consolidation of the results with fundamentals. The book is extremely useful as a monograph for graduate students and researchers, but is also a comprehensive, general reference on state-of-the-art techniques in modelling, optimization and design of DSSCs. - Includes chapter contributions from worldwide leaders in the field - Offers first-principles of modelling solar cells with different system scales, from the electronic to macroscopic level - References, in a single resource, state-of-the-art techniques in modelling, optimization and design of DSSC
Download or read book Dye sensitized Solar Cells written by K. Kalyanasundaram and published by EPFL Press. This book was released on 2010-08-03 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dye-sensitized solar cell (DSC) is a photovoltaic converter that mimics natural photosynthesis. Like green plants and algae it uses a molecular absorber, the dye, to harvest sunlight and generate electric charges. Dye-sensitized solar cells are poised to replace existing technologies in «low density» solar-energy applications, especially in contexts where mechanical robustness and light weight is required. This book offers the first comprehensive look at this promising technology and aims to provide a graduate level text that brings together the fundamentals of DSC from three perspectives (materials, performance, and mechanistic aspects), as well as to serve as an advanced monograph that summarizes the key advances and lists the technical challenges remaining to be solved.
Download or read book Electrochemistry of N4 Macrocyclic Metal Complexes written by Jose H. Zagal and published by Springer. This book was released on 2016-05-03 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition describes the state of the art regarding metal complexes of N4-ligands, such as porphyrins and phthalocyanines. Volume 2 focuses on the electro assisted use of N4 complexes as biomimetic models for studying several biological redox processes. It focuses on molecular oxygen transport and catalytic activation to mimic monooxygenase enzymes of the cytochrome P450 in particular. It also examines N4 complexes’ use as catalysts for the oxidative degradation of various types of pollutants (organo-halides, for example) and residual wastes. The remarkable activity of these complexes towards a large number of significantly relevant biological compounds makes them excellent candidates as electrode modifiers for electrochemical sensing. This volume also discusses applications of N4 Macrocyclic Metal Complexes to photoelectrochemistry and photocatalysis, and concludes with an exciting section on Electrosynthesis of N4.
Download or read book Semiconductor Electrodes written by Harry O. Finklea and published by Elsevier Publishing Company. This book was released on 1988 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors have been studied as electrodes in electrochemical systems since the mid-1950's. However, it was not until the 1970's that the search for alternative energy sources, especially solar energy, led to an enormous expansion in semiconductor electrode research. One attractive option for solar energy conversion is the semiconductor liquid-junction solar cell, which can be designed to produce either electrical power or fuel such as hydrogen. Consequently the number of papers published concerning semiconductor electrodes has rapidly increased. Previous books have principally focused on the underlying theory (largely from solid state physics) and principles of operation of all semiconductor electrodes. It therefore seemed both useful and appropriate to review the field with the intention of collating information for each semiconductor or family of semiconductors, with contributions from authors who are all recognized experts in their field. Each chapter is devoted to critically assessing the recent literature on a particular semiconductor or family of semiconductors.
Download or read book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications written by Rayees Ahmad Zargar and published by John Wiley & Sons. This book was released on 2023-09-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: METAL OXIDE NANOCOMPOSITE THIN FILMS FOR OPTOELECTRONIC DEVICE APPLICATIONS The book provides insight into the fundamental aspects, latest research, synthesis route development, preparation, and future applications of metal oxide nanocomposite thin films. The fabrication of thin film-based materials is important to the future production of safe, efficient, and affordable energy as the devices convert sunlight into electricity. Thin film devices allow excellent interface engineering for high-performance printable solar cells as their structures are highly reliable and stand-alone systems can provide the required megawatts. They have been used as power sources in solar home systems, remote buildings, water pumping, megawatt-scale power plants, satellites, communications, and space vehicles. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications covers the basics of advanced nanometal oxide-based materials, their synthesis, characterization, and applications, and all the updated information on optoelectronics. Topics discussed include the implications of metal oxide thin films, which are critical for device fabrications. It provides updated information on the economic aspect and toxicity, with great focus paid to display applications, and covers some core areas of nanotechnology, which are particularly concerned with optoelectronics and the available technologies. The book concludes with insights into the role of nanotechnology and the physics behind photovoltaics. Audience The book will be an important volume for electronics and electrical engineers, nanotechnologists, materials scientists, inorganic chemists in academic research, and those in industries, exploring the applications of nanoparticles in semiconductors, power electronics, and more.
Download or read book The Future of Semiconductor Oxides in Next Generation Solar Cells written by Monica Lira-Cantu and published by Elsevier. This book was released on 2017-09-19 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Future of Semiconductor Oxides in Next-Generation Solar Cells begins with several chapters covering the synthesis of semiconductor oxides for NGSCs. Part II goes on to cover the types and applications of NGSCs currently under development, while Part III brings the two together, covering specific processing techniques for NGSC construction. Finally, Part IV discusses the stability of SO solar cells compared to organic solar cells, and the possibilities offered by hybrid technologies. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of semiconductor oxides in next generation solar cells. - Unlocks the potential of advanced semiconductor oxides to transform Next Generation Solar Cell (NGSC) design - Full coverage of new developments and recent research make this essential reading for researchers and engineers alike - Explains the synthesis and processing of semiconductor oxides with a view to their use in NGSCs
Download or read book Scanning Electrochemical Microscopy written by Allen J. Bard and published by CRC Press. This book was released on 2001-04-18 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning Electrochemical Microscopy describes the theory and operating principles of scanning electrochemical microscopy (SECM), including instrumentation, tip preparation, imaging techniques and potentiometric probes. The book explores applications relevant to electron transfer reactions, reaction kinetics, chemical events at interfaces, biologica
Download or read book Dye sensitized Solar Cells written by Songyuan Dai and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-07-05 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The operation of everything in the universe needs a special „material“-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth‘s energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed.
Download or read book Solar Cell Device Physics written by Stephen J. Fonash and published by Elsevier. This book was released on 2012-12-02 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1987 with total page 1294 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Photophysics Photochemical and Substitution Reactions written by Satyen Saha and published by BoD – Books on Demand. This book was released on 2021-06-30 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a unique blend of topics covering photon-initiated reactions to substitution reactions. Additionally, several fantastic chapters on the photophysics of popular dyes and their applications make the book interesting for researchers working on photon-initiated physical and chemical processes.
Download or read book ERDA Energy Research Abstracts written by and published by . This book was released on 1987 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Photoelectrocatalysis written by Leonardo Palmisano and published by Elsevier. This book was released on 2022-10-21 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. - Presents the fundamentals of photoelectrocatalysis - Outlines photoelectrocatalytic green chemistry - Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction - Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects
Download or read book Biophotoelectrochemistry From Bioelectrochemistry to Biophotovoltaics written by Lars J.C. Jeuken and published by Springer. This book was released on 2017-05-22 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Download or read book Organic Solar Cells written by Wolfgang Tress and published by Springer. This book was released on 2014-11-22 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
Download or read book Electro Fenton Process written by Minghua Zhou and published by Springer. This book was released on 2017-11-25 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses the theoretical fundamentals and potential applications of the original electro-Fenton (EF) process and its most innovative and promising versions, all of which are classified as electrochemical advanced oxidation processes. It consists of 15 chapters that review the latest advances and trends, material selection, reaction and reactor modeling and EF scale-up. It particularly focuses on the applications of EF process in the treatment of toxic and persistent organic pollutants in water and soil, showing highly efficient removal for both lab-scale and pre-pilot setups. Indeed, the EF technology is now mature enough to be brought to market, and this collection of contributions from leading experts in the field constitutes a timely milestone for scientists and engineers.