EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electrical Transport in Suspended Two dimensional Materials

Download or read book Electrical Transport in Suspended Two dimensional Materials written by Fenglin Wang and published by . This book was released on 2015 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, the realization of one-dimensional electrical contacts to hexagonal-boron nitride-encapsulated samples points a direction for transport studies of 2D materials. For instance, such MoS2 devices with graphene contacts have demonstrated unprecedented mobility. Furthermore, heterostructures consisting of various 2D atomic layers may be built to create artificial superlattices, thus enable the exploration of novel phenomena and devices with new functionalities.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Defects in Two Dimensional Materials

Download or read book Defects in Two Dimensional Materials written by Rafik Addou and published by Elsevier. This book was released on 2022-02-14 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials

Book Two Dimensional Materials for Electromagnetic Shielding

Download or read book Two Dimensional Materials for Electromagnetic Shielding written by Chong Min Koo and published by John Wiley & Sons. This book was released on 2021-06-14 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Materials for Electromagnetic Shielding Discover a cutting-edge reference on 2D EMI shielding materials for both industrial and academic audiences Two-Dimensional Materials for Electromagnetic Shielding delivers a thorough and comprehensive examination of all aspects of electromagnetic interference (EMI) shielding and microwave absorption, including fundamentals and applications, as well as emerging 2D materials in the field, like graphene, and MXenes. The book covers basic knowledge on shielding mechanisms and the demanding physical, chemical, and mechanical properties of the 2D materials against betrayed electromagnetic waves. The benefits of novel 2D materials over existing materials are thoroughly explained and the reader is provided with insight into future developments in shielding materials for highly integrated electrical and electronic equipment. The book offers explanations and in-depth descriptions of graphene and MXenes materials, as well as likely future challenges that will confront practitioners in the field. Ideal for scientists, researchers, and engineers who design novel EMI shielding materials, the book also provides: A thorough introduction to electromagnetic field sources and their impact on human beings An exploration of EMI shielding mechanism and conversion techniques, including microwave absorption mechanisms and scattering parameter conversion methods Discussions of measurements and standards in EMI shielding, including shielding effectiveness measurements An examination of graphene, MXenes, and other 2D materials for EMI shielding and microwave absorbing Perfect for materials scientists, electrochemists, inorganic chemists, physical chemists, and radiation chemists, Two-Dimensional Materials for Electromagnetic Shielding will also earn a place in the libraries of applied physicists and engineering scientists in industry seeking a one-stop reference on cutting-edge 2D electromagnetic interference shielding materials.

Book Electrical Transport and Thermal Expansion in Van Der Waals Materials

Download or read book Electrical Transport and Thermal Expansion in Van Der Waals Materials written by Lei Jing and published by . This book was released on 2013 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel two-dimensional materials with weak interlayer Van der Waals interaction are fantastic platforms to study novel physical phenomena. This thesis describes our investigation on two different Van der Waals materials: graphene and bismuth selenide with calcium doping (Ca [subscript x] Bi [subscript 2-x] Se[subscript 3] , x as the doping level) in the topological insulator family. Firstly, we characterize the electrical transport behaviors of high-quality substrate-supported bilayer graphene devices with suspended metal gates. The device exhibits a transport gap induced by external electric field with an on/off ratio of 20,000, which could be explained by variable range hoping between localized states or disordered charge puddles. At large magnetic field, the device presents quantum Hall plateau at fractional values of conductance quantum, which arises from the equilibration of edge states between differentially doped regions. Secondly, we present our study on the electronic transport of Ca[subscript x] Bi [subscript 2-x] Se [subscript 3] thin films, which are three-dimensional topological insulators and coupled with superconducting leads. In these novel Josephson transistors, we observe different characteristic features by energy dispersion spectrum (EDS) and Raman spectroscopy, and the weak suppression in the critical current I [subscript c]. Thirdly, we explore the thermal expansion of suspended graphene. By in-situ scanning electron microscope (SEM), we measure the thickness-dependence of graphene's negative thermal expansion coefficient (TEC). We propose that there is a competitive relation between the intrinsic TEC and the friction from the substrate and the graphene. Lastly, in collaboration with Dr. Nikolai Kalugin from New Mexico Tech., we explore the graphene's application as a quantum Hall effect infrared photodetector. This graphene-based detector can be operated at higher temperature (liquid nitrogen) and wider frequency than the previous implementations of quantum Hall detector.

Book 2016 IEEE International Electron Devices Meeting  IEDM

Download or read book 2016 IEEE International Electron Devices Meeting IEDM written by IEEE Staff and published by . This book was released on 2016-12-03 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: the IEEE IEDM has been the world s main forum for reporting breakthroughs in technology, design, manufacturing, physics and the modeling of semiconductors and other electronic devices Topics range from deep submicron CMOS transistors and memories to novel displays and imagers, from compound semiconductor materials to nanotechnology devices and architectures, from micromachined devices to smart power technologies, etc

Book Two dimensional Materials

Download or read book Two dimensional Materials written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Book 2D Monoelemental Materials  Xenes  and Related Technologies

Download or read book 2D Monoelemental Materials Xenes and Related Technologies written by Zongyu Huang and published by CRC Press. This book was released on 2022-04-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Book Spin Current

    Book Details:
  • Author : Sadamichi Maekawa
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198787073
  • Pages : 541 pages

Download or read book Spin Current written by Sadamichi Maekawa and published by Oxford University Press. This book was released on 2017 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Book Electrical and Optoelectronic Properties of the Nanodevices Composed of Two Dimensional Materials

Download or read book Electrical and Optoelectronic Properties of the Nanodevices Composed of Two Dimensional Materials written by Cheng-Hua Liu and published by Springer. This book was released on 2018-08-22 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the transport and magneto-transport properties of graphene p-n-p junctions, such as the pronounced quantum Hall effect, a well-defined plateau–plateau transition point, and scaling behavior. In addition, it demonstrates persistent photoconductivity (PPC) in the monolayer MoS2 devices, an effect that can be attributed to random localized potential fluctuations in the devices. Further, it studies scaling behavior at zeroth Landau level and high performance of fractional values of quantum Hall plateaus in these graphene p-n-p devices. Moreover, it demonstrates a unique and efficient means of controlling the PPC effect in monolayer MoS2. This PPC effect may offer novel functionalities for MoS2-based optoelectronic applications in the future.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Book Preparation and Properties of 2D Materials

Download or read book Preparation and Properties of 2D Materials written by Byungjin Cho and published by MDPI. This book was released on 2020-12-10 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials

Book Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures

Download or read book Synthesis Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Book Transport Phenomena in Micro  and Nanoscale Functional Materials and Devices

Download or read book Transport Phenomena in Micro and Nanoscale Functional Materials and Devices written by Joao B. Sousa and published by Elsevier. This book was released on 2021-03-26 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices offers a pragmatic view on transport phenomena for micro- and nanoscale materials and devices, both as a research tool and as a means to implant new functions in materials. Chapters emphasize transport properties (TP) as a research tool at the micro/nano level and give an experimental view on underlying techniques. The relevance of TP is highlighted through the interplay between a micro/nanocarrier's characteristics and media characteristics: long/short-range order and disorder excitations, couplings, and in energy conversions. Later sections contain case studies on the role of transport properties in functional nanomaterials. This includes transport in thin films and nanostructures, from nanogranular films, to graphene and 2D semiconductors and spintronics, and from read heads, MRAMs and sensors, to nano-oscillators and energy conversion, from figures of merit, micro-coolers and micro-heaters, to spincaloritronics. Presents a pragmatic description of electrical transport phenomena in micro- and nanoscale materials and devices from an experimental viewpoint Provides an in-depth overview of the experimental techniques available to measure transport phenomena in micro- and nanoscale materials Features case studies to illustrate how each technique works Highlights emerging areas of interest in micro- and nanomaterial transport phenomena, including spintronics

Book Fundamentals and Sensing Applications of 2D Materials

Download or read book Fundamentals and Sensing Applications of 2D Materials written by Chandra Sekhar Rout and published by Woodhead Publishing. This book was released on 2019-06-15 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

Book 2D Materials for Electronics  Sensors and Devices

Download or read book 2D Materials for Electronics Sensors and Devices written by Saptarshi Das and published by Elsevier. This book was released on 2022-09-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Materials for Electronics, Sensors and Devices: Synthesis, Characterization, Fabrication and Application provides an overview of various top-down and bottom-up synthesis techniques, along with stitching, stacking and stoichiometric control methods for different 2D materials and their heterostructures. The book focuses on the widespread applications of various 2D materials in high-performance and low-power sensors, field effect devices, flexible electronics, straintronics, spintronics, brain-inspired electronics, energy harvesting and energy storage devices. This is an important reference for materials scientists and engineers looking to gain a greater understanding on how 2D materials are being used to create a range of low cost, sustainable products and devices. Discusses the major synthesis and preparation methods of a range of emerging 2D electronic materials Provides state-of–the-art information on the most recent advances, including theoretical and experimental studies and new applications Discusses the major challenges of the mass application of 2D materials in industry