EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films

Download or read book Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films written by Ekaterina Yurchuk and published by Logos Verlag Berlin GmbH. This book was released on 2015-06-30 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2 thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

Book Formation of Ferroelectricity in Hafnium Oxide Based Thin Films

Download or read book Formation of Ferroelectricity in Hafnium Oxide Based Thin Films written by Tony Schenk and published by BoD – Books on Demand. This book was released on 2017-03-15 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2011, Böscke et al. reported the unexpected discovery of ferroelectric properties in hafnia based thin films, which has since initiated many further studies and revitalized research on the topic of ferroelectric memories. In spite of many efforts, the unveiling of the fundamentals behind this surprising discovery has proven rather challenging. In this work, the originally claimed Pca21 phase is experimentally proven to be the root of the ferroelectric properties and the nature of this ferroelectricity is classified in the frame of existing concepts of ferroelectric materials. Parameters to stabilize this polar phase are examined from a theoretical and fabrication point of view. With these very basic questions addressed, the application relevant electric field cycling behavior is studied. The results of first-order reversal curves, impedance spectroscopy, scanning transmission electron microscopy and piezoresponse force microscopy significantly advance the understanding of structural mechanisms underlying wake-up, fatigue and the novel phenomenon of split-up/merging of transient current peaks. The impact of field cycling behavior on applications like ferroelectric memories is highlighted and routes to optimize it are derived. These findings help to pave the road for a successful commercialization of hafnia based ferroelectrics.

Book Ferroelectric Gate Field Effect Transistor Memories

Download or read book Ferroelectric Gate Field Effect Transistor Memories written by Byung-Eun Park and published by Springer Nature. This book was released on 2020-03-23 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.

Book Development of HfO2 Based Ferroelectric Memories for Future CMOS Technology Nodes

Download or read book Development of HfO2 Based Ferroelectric Memories for Future CMOS Technology Nodes written by Stefan Ferdinand Müller and published by BoD – Books on Demand. This book was released on 2016-04-08 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis evaluates the viability of ferroelectric Si:HfO2 and its derived FeFET application for non-volatile data storage. At the beginning, the ferroelectric effect is explained briefly such that the applications that make use of it can be understood. Afterwards, the latest findings on ferroelectric HfO2 are reviewed and their potential impact on future applications is discussed. Experimental data is presented afterwards focusing on the ferroelectric material characteristics of Si:HfO2 that are most relevant for memory applications. Besides others, the stability of the ferroelectric switching effect could be demonstrated in a temperature range of almost 400 K. Moreover, nanosecond switching speed and endurance in the range of 1 million to 10 billion cycles could be proven. Retention and imprint characteristics have furthermore been analyzed and are shown to be stable for 1000 hours bake time at 125 oC. Derived from the ferroelectric effect in HfO2, a 28 nm FeFET memory cell is introduced as the central application of this thesis. Based on numerical simulations, the memory concept is explained and possible routes towards an optimized FeFET cell are discussed. Subsequently, the results from electrical characterization of FeFET multi-structures are presented and discussed. By using Si:HfO2 it was possible to realize the world's first 28 nm FeFET devices possessing i.a. 10k cycling endurance and an extrapolated 10 year data retention at room temperature. The next step towards a FeFET memory is represented by connecting several memory cells into matrix-type configurations. A cell concept study illustrates the different ways in which FeFET cells can be combined together to give high density memory arrays. For the proposed architectures, operational schemes are theoretically discussed and analyzed by both electrical characterization of FeFET multi-structures and numerical simulations. The thesis concludes with the electrical characterization of small FeFET memory arrays. First results show that a separation between memory states can be achieved by applying poling and incremental step pulse programming (ISPP) sequences. These results represent an important cornerstone for future studies on Si:HfO2 and its related applications.

Book Gate Stack Engineering for Emerging Polarization based Non volatile Memories

Download or read book Gate Stack Engineering for Emerging Polarization based Non volatile Memories written by Milan Pesic and published by BoD – Books on Demand. This book was released on 2017-07-14 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hafnium based ferroelectric memories offer a low power consumption, ultra-fast operation, non-volatile retention as well as the small relative cell size as the main requirements for future memories. These remarkable properties of ferroelectric memories make them promising candidates for non-volatile memories that would bridge the speed gap between fast logic and slow off-chip, long term storage. Even though the retention of hafnia based ferroelectric memories can be extrapolated to a ten-year specification target, they suffer from a rather limited endurance. Therefore, this work targets relating the field cycling behavior of hafnia based ferroelectric memories to the physical mechanisms taking place within the film stack. Establishing a correlation between the performance of the device and underlying physical mechanisms is the first step toward understanding the device and engineering guidelines for novel, superior devices. In the frame of this work, an in-depth ferroelectric and dielectric characterization, analysis and TEM study was combined with comprehensive modeling approach. Drift and diffusion based vacancy redistribution was found as the main cause for the phase transformation and consequent increase of the remnant polarization, while domain pinning and defect generation is identified to be responsible for the device fatigue. Finally, based on Landau theory, a simple way to utilize the high endurance strength of anti-ferroelectric (AFE) materials and achieve non-volatility in state-of-the-art DRAM stacks was proposed and the fabrication of the world's first non-volatile AFE-RAM is reported. These findings represent an important milestone and pave the way toward a commercialization of (anti)ferroelectric non-volatile memories based on simple binary-oxides.

Book Ferroelectricity in Doped Hafnium Oxide

Download or read book Ferroelectricity in Doped Hafnium Oxide written by Uwe Schroeder and published by Woodhead Publishing. This book was released on 2019-03-27 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face

Book Development and Investigation of Novel Logic in Memory and Nonvolatile Logic Circuits Utilizing Hafnium Oxide Based Ferroelectric Field Effect Transistors

Download or read book Development and Investigation of Novel Logic in Memory and Nonvolatile Logic Circuits Utilizing Hafnium Oxide Based Ferroelectric Field Effect Transistors written by Evelyn Tina Breyer and published by BoD – Books on Demand. This book was released on 2022-02-08 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Not only conventional computer architectures, such as the von-Neumann architecture with its inevitable von-Neumann bottleneck, but likewise the emerging field of edge computing require to substantially decrease the spatial separation of logic and memory units to overcome power and latency shortages. The integration of logic operations into memory units (Logic-in-Memory), as well as memory elements into logic circuits (Nonvolatile Logic), promises to fulfill this request by combining high-speed with low-power operation. Ferroelectric field-effect transistors (FeFETs) based on hafnium oxide prove to be auspicious candidates for the memory elements in applications of that kind, as those nonvolatile memory elements are CMOS-compatible and likewise scalable. This work presents implementations that merge logic and memory by exploiting the natural capability of the FeFET to combine logic functionality (transistor) and memory ability (nonvolatility).

Book Resistive Switching

Download or read book Resistive Switching written by Daniele Ielmini and published by John Wiley & Sons. This book was released on 2015-12-23 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories. Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text. An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.

Book Ferroelectrics

    Book Details:
  • Author : Mickaël Lallart
  • Publisher : BoD – Books on Demand
  • Release : 2011-08-23
  • ISBN : 9533074566
  • Pages : 266 pages

Download or read book Ferroelectrics written by Mickaël Lallart and published by BoD – Books on Demand. This book was released on 2011-08-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on the application of ferroelectric devices to innovative systems. In particular, the use of these materials as varying capacitors, gyroscope, acoustics sensors and actuators, microgenerators and memory devices will be exposed, providing an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric devices.

Book Semiconductor Devices and Technologies for Future Ultra Low Power Electronics

Download or read book Semiconductor Devices and Technologies for Future Ultra Low Power Electronics written by D. Nirmal and published by CRC Press. This book was released on 2021-12-09 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided. FEATURES Discusses the latest updates in the field of ultra low power semiconductor transistors Provides both experimental and analytical solutions for TFETs and NCFETs Presents synthesis and fabrication processes for FinFETs Reviews details on 2-D materials and 2-D transistors Explores the application of FETs for biosensing in the healthcare field This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.

Book Negative Capacitance in Ferroelectric Materials

Download or read book Negative Capacitance in Ferroelectric Materials written by Michael Hoffmann and published by . This book was released on 2020 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ferroelectrics and Their Applications

Download or read book Ferroelectrics and Their Applications written by Husein Irzaman and published by BoD – Books on Demand. This book was released on 2018-10-03 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectricity is a symptom of inevitable electrical polarization changes in materials without external electric field interference. Ferroelectricity is a phenomenon exhibited by crystals with a spontaneous polarization and hysteresis effects associated with dielectric changes when an electric field is given. Our fascination with ferroelectricity is in recognition of a beautiful article by Itskovsky, in which he explains the kinetics of a ferroelectric phase transition in a thin ferroelectric layer (film). We have been researching ferroelectric materials since 2001. There are several materials known for their ferroelectric properties. Barium titanate and barium strontium titanate are the most well known. Several others include tantalum oxide, lead zirconium titanate, gallium nitride, lithium tantalate, aluminium, copper oxide, and lithium niobate. There is still a blue ocean of ferroelectric applications yet to be expounded. It is and hopefully always will be a bright future.

Book Selected Advances in Nanoelectronic Devices

Download or read book Selected Advances in Nanoelectronic Devices written by Mojtaba Joodaki and published by Springer Science & Business Media. This book was released on 2012-08-15 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoelectronics, as a true successor of microelectronics, is certainly a major technology boomer in the 21st century. This has been shown by its several applications and also by its enormous potential to influence all areas of electronics, computers, information technology, aerospace defense, and consumer goods. Although the current semiconductor technology is projected to reach its physical limit in about a decade, nanoscience and nanotechnology promise breakthroughs for the future. The present books provides an in-depth review of the latest advances in the technology of nanoelectronic devices and their developments over the past decades. Moreover, it introduces new concepts for the realization of future nanoelectronic devices. The main focus of the book is on three fundamental branches of semiconductor products or applications: logic, memory, and RF and communication. By pointing out to the key technical challenges, important aspects and characteristics of various designs are used to illustrate mechanisms that overcome the technical barriers. Furthermore, by comparing advantages and disadvantages of different designs, the most promising solutions are indicated for each application.

Book Negative Capacitance Field Effect Transistors

Download or read book Negative Capacitance Field Effect Transistors written by Young Suh Song and published by CRC Press. This book was released on 2023-10-31 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable devices, wireless communication, sensor, and circuit domains. Negative Capacitance Field Effect Transistors: Physics, Design, Modeling and Applications discusses low-power semiconductor technology and addresses state-of-the-art techniques such as negative capacitance field effect transistors and tunnel field effect transistors. The book is split into three parts. The first part discusses the foundations of low-power electronics, including the challenges and demands and concepts such as subthreshold swing. The second part discusses the basic operations of negative capacitance field effect transistors (NCFETs) and tunnel field effect transistors (TFETs). The third part covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be a one-stop guide for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices such as NC-FET, FinFET, tunnel FET, and device–circuit codesign.

Book High k Gate Dielectrics for CMOS Technology

Download or read book High k Gate Dielectrics for CMOS Technology written by Gang He and published by John Wiley & Sons. This book was released on 2012-08-10 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art overview of high-k dielectric materials for advanced field-effect transistors, from both a fundamental and a technological viewpoint, summarizing the latest research results and development solutions. As such, the book clearly discusses the advantages of these materials over conventional materials and also addresses the issues that accompany their integration into existing production technologies. Aimed at academia and industry alike, this monograph combines introductory parts for newcomers to the field as well as advanced sections with directly applicable solutions for experienced researchers and developers in materials science, physics and electrical engineering.

Book Multifunctional Oxide Heterostructures

Download or read book Multifunctional Oxide Heterostructures written by Evgeny Y. Tsymbal and published by Oxford University Press. This book was released on 2012-08-30 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the rapidly developing field of oxide thin-films and heterostructures, which exhibit unusual physical properties interesting from the fundamental point of view and for device application. The chapters discuss topics that represent some of the key innovations in the field over recent years.

Book Advances in Non volatile Memory and Storage Technology

Download or read book Advances in Non volatile Memory and Storage Technology written by Yoshio Nishi and published by Woodhead Publishing. This book was released on 2019-06-15 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping and resistive random access memory