EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Efficient Numerical Methods for Non local Operators

Download or read book Efficient Numerical Methods for Non local Operators written by Steffen Börm and published by European Mathematical Society. This book was released on 2010 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix equations used in control theory. $\mathcal{H}^2$-matrices offer a refinement of hierarchical matrices: Using a multilevel representation of submatrices, the efficiency can be significantly improved, particularly for large problems. This book gives an introduction to the basic concepts and presents a general framework that can be used to analyze the complexity and accuracy of $\mathcal{H}^2$-matrix techniques. Starting from basic ideas of numerical linear algebra and numerical analysis, the theory is developed in a straightforward and systematic way, accessible to advanced students and researchers in numerical mathematics and scientific computing. Special techniques are required only in isolated sections, e.g., for certain classes of model problems.

Book Efficient Numerical Methods for Non local Operators

Download or read book Efficient Numerical Methods for Non local Operators written by Steffen Börm and published by . This book was released on 2010 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hierarchical Matrices  Algorithms and Analysis

Download or read book Hierarchical Matrices Algorithms and Analysis written by Wolfgang Hackbusch and published by Springer. This book was released on 2015-12-21 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Book Tensor Numerical Methods in Scientific Computing

Download or read book Tensor Numerical Methods in Scientific Computing written by Boris N. Khoromskij and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-06-11 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations

Book Tensor Spaces and Numerical Tensor Calculus

Download or read book Tensor Spaces and Numerical Tensor Calculus written by Wolfgang Hackbusch and published by Springer Nature. This book was released on 2019-12-16 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Book Non Local Cell Adhesion Models

Download or read book Non Local Cell Adhesion Models written by Andreas Buttenschön and published by Springer Nature. This book was released on 2021-06-09 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.

Book Modern Solvers for Helmholtz Problems

Download or read book Modern Solvers for Helmholtz Problems written by Domenico Lahaye and published by Birkhäuser. This book was released on 2017-03-02 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.

Book First Congress of Greek Mathematicians

Download or read book First Congress of Greek Mathematicians written by Ioannis Emmanouil and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-03-23 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interesting collection of up-to-date survey articles on various topics of current mathematical research presents extended versions of the plenary talks given by important Greek mathematicians at the congress held in Athens, Greece, on occasion of the celebration for the 100 years of the Hellenic Mathematical Society.

Book Fractional Calculus

    Book Details:
  • Author : Dumitru Baleanu
  • Publisher : World Scientific
  • Release : 2012
  • ISBN : 9814355216
  • Pages : 426 pages

Download or read book Fractional Calculus written by Dumitru Baleanu and published by World Scientific. This book was released on 2012 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives of elementary functions, and so on. This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models. All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book was written with a trade-off in mind between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice. Numerical code is also provided.

Book Multi scale Simulation of Composite Materials

Download or read book Multi scale Simulation of Composite Materials written by Stefan Diebels and published by Springer. This book was released on 2019-02-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their high stiffness and strength and their good processing properties short fibre reinforced thermoplastics are well-established construction materials. Up to now, simulation of engineering parts consisting of short fibre reinforced thermoplastics has often been based on macroscopic phenomenological models, but deformations, damage and failure of composite materials strongly depend on their microstructure. The typical modes of failure of short fibre thermoplastics enriched with glass fibres are matrix failure, rupture of fibres and delamination, and pure macroscopic consideration is not sufficient to predict those effects. The typical predictive phenomenological models are complex and only available for very special failures. A quantitative prediction on how failure will change depending on the content and orientation of the fibres is generally not possible, and the direct involvement of the above effects in a numerical simulation requires multi-scale modelling. One the one hand, this makes it possible to take into account the properties of the matrix material and the fibre material, the microstructure of the composite in terms of fibre content, fibre orientation and shape as well as the properties of the interface between fibres and matrix. On the other hand, the multi-scale approach links these local properties to the global behaviour and forms the basis for the dimensioning and design of engineering components. Furthermore, multi-scale numerical simulations are required to allow efficient solution of the models when investigating three-dimensional problems of dimensioning engineering parts. Bringing together mathematical modelling, materials mechanics, numerical methods and experimental engineering, this book provides a unique overview of multi-scale modelling approaches, multi-scale simulations and experimental investigations of short fibre reinforced thermoplastics. The first chapters focus on two principal subjects: the mathematical and mechanical models governing composite properties and damage description. The subsequent chapters present numerical algorithms based on the Finite Element Method and the Boundary Element Method, both of which make explicit use of the composite’s microstructure. Further, the results of the numerical simulations are shown and compared to experimental results. Lastly, the book investigates deformation and failure of composite materials experimentally, explaining the applied methods and presenting the results for different volume fractions of fibres. This book is a valuable resource for applied mathematics, theoretical and experimental mechanical engineers as well as engineers in industry dealing with modelling and simulation of short fibre reinforced composites.

Book High Performance Computing

Download or read book High Performance Computing written by Ponnuswamy Sadayappan and published by Springer Nature. This book was released on 2020-06-15 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 35th International Conference on High Performance Computing, ISC High Performance 2020, held in Frankfurt/Main, Germany, in June 2020.* The 27 revised full papers presented were carefully reviewed and selected from 87 submissions. The papers cover a broad range of topics such as architectures, networks & infrastructure; artificial intelligence and machine learning; data, storage & visualization; emerging technologies; HPC algorithms; HPC applications; performance modeling & measurement; programming models & systems software. *The conference was held virtually due to the COVID-19 pandemic. Chapters "Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) Streaming-Aggregation Hardware Design and Evaluation", "Solving Acoustic Boundary Integral Equations Using High Performance Tile Low-Rank LU Factorization", "Scaling Genomics Data Processing with Memory-Driven Computing to Accelerate Computational Biology", "Footprint-Aware Power Capping for Hybrid Memory Based Systems", and "Pattern-Aware Staging for Hybrid Memory Systems" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book Computer Science     Theory and Applications

Download or read book Computer Science Theory and Applications written by Alexander S. Kulikov and published by Springer. This book was released on 2016-06-02 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 11th International Computer Science Symposium in Russia, CSR 2016, held in St. Petersburg, Russia, in June 2016. The 28 full papers presented in this volume were carefully reviewed and selected from 71 submissions. In addition the book contains 4 invited lectures. The scope of the proposed topics is quite broad and covers a wide range of areas such as: include, but are not limited to: algorithms and data structures; combinatorial optimization; constraint solving; computational complexity; cryptography; combinatorics in computer science; formal languages and automata; computational models and concepts; algorithms for concurrent and distributed systems, networks; proof theory and applications of logic to computer science; model checking; automated reasoning; and deductive methods.

Book Fast Direct Solvers for Elliptic PDEs

Download or read book Fast Direct Solvers for Elliptic PDEs written by Per-Gunnar Martinsson and published by SIAM. This book was released on 2019-12-16 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.

Book Spectral and High Order Methods for Partial Differential Equations   ICOSAHOM 2012

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2012 written by Mejdi Azaïez and published by Springer Science & Business Media. This book was released on 2013-11-19 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2012), and provides an overview of the depth and breath of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography. ​

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020 1

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020 1 written by Jens M. Melenk and published by Springer Nature. This book was released on 2023-06-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.

Book Exploiting Hidden Structure in Matrix Computations  Algorithms and Applications

Download or read book Exploiting Hidden Structure in Matrix Computations Algorithms and Applications written by Michele Benzi and published by Springer. This book was released on 2017-01-24 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.

Book High Performance Computing in Science and Engineering

Download or read book High Performance Computing in Science and Engineering written by Tomáš Kozubek and published by Springer Nature. This book was released on 2021-01-07 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on High Performance Computing in Science and Engineering, HPCSE 2019, held in Karolinka, Czech Republic, in May 2019. The 9 papers presented in this volume were carefully reviewed and selected from 13 submissions. The conference provides an international forum for exchanging ideas among researchers involved in scientific and parallel computing, including theory and applications, as well as applied and computational mathematics. The focus of HPCSE 2019 was on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern parallel and distributed computing architectures, as well as on large-scale applications.