EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

Download or read book Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane written by and published by . This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region downstream of the first row of suction side coolant holes. Suction side film cooling was operated in the range 0 less than M less than 1.4. The showerhead was tested at M(sub sh) = 1.6. In addition to the completely smooth condition, simulated airfoil roughness was used upstream of the coolant holes, downstream of the coolant holes, and both upstream and downstream of the coolant holes. Two levels of mainstream turbulence intensity were tested. The heat transfer measurements were conducted by application of a uniform heat flux in the region downstream of the coolant holes. The resulting surface temperature distributions were measured with infrared thermography. Because the upstream region was unheated, the influence of film cooling on the heat transfer coefficient was due to only to hydrodynamic effects and not thermal effects. The coolant to mainstream density ratio of the majority of the experiments was unity; however, a single experiment was conducted at a density ratio of DR = 1.6 to determine how the coolant to mainstream density ratio affects heat transfer. Net heat flux reduction calculations were performed by combining the heat transfer coefficient measurements of the present study with adiabatic effectiveness measurements of a separate study. In order to gain insight into the hydrodynamics that affect the heat transfer, boundary layer measurements were conducted using hot-wire anemometry.

Book Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

Download or read book Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane written by and published by . This book was released on 2004 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region downstream of the first row of suction side coolant holes. Suction side film cooling was operated in the range 0 less than M less than 1.4. The showerhead was tested at M(sub sh) = 1.6. In addition to the completely smooth condition, simulated airfoil roughness was used upstream of the coolant holes, downstream of the coolant holes, and both upstream and downstream of the coolant holes. Two levels of mainstream turbulence intensity were tested. The heat transfer measurements were conducted by application of a uniform heat flux in the region downstream of the coolant holes. The resulting surface temperature distributions were measured with infrared thermography. Because the upstream region was unheated, the influence of film cooling on the heat transfer coefficient was due to only to hydrodynamic effects and not thermal effects. The coolant to mainstream density ratio of the majority of the experiments was unity; however, a single experiment was conducted at a density ratio of DR = 1.6 to determine how the coolant to mainstream density ratio affects heat transfer. Net heat flux reduction calculations were performed by combining the heat transfer coefficient measurements of the present study with adiabatic effectiveness measurements of a separate study. In order to gain insight into the hydrodynamics that affect the heat transfer, boundary layer measurements were conducted using hot-wire anemometry.

Book Effects of Surface Roughness on Film Cooling

Download or read book Effects of Surface Roughness on Film Cooling written by Donald L. Schmidt and published by . This book was released on 1996 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress & Exhibition Birmingham, UK - June 10-13, 1996.

Book Effect of Surface Pressure Distribution of Gas Turbine Vane on Film Cooling

Download or read book Effect of Surface Pressure Distribution of Gas Turbine Vane on Film Cooling written by Takafumi Nakahara and published by . This book was released on 1981 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rough Wall and Near hole Obstruction Effects on Film Cooling with and Without a Transverse Trench

Download or read book Rough Wall and Near hole Obstruction Effects on Film Cooling with and Without a Transverse Trench written by Ruwan Prasanna Somawardhana and published by . This book was released on 2006 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Significant degradation of adiabatic effectiveness can be caused by surface roughness and near-hole obstructions formed from deposition of contaminants. Since obstructions are a randomly occurring event, there are many variables to consider, namely shape, width, length, height, and position in relation to a film cooling hole. In addition to this, the level of overall surface roughness must also be considered. This study investigated these different variables on the suction side of a scaled-up turbine vane using cylindrical holes to determine what is important when considering surface roughness and obstructions. In addition, the use of a transverse trench was tested with a rough wall and near-hole obstructions and was found to be a method to mitigate a large part of the degrading effects caused by a rough surface and near-hole obstructions.

Book Film cooling effectiveness in the showerhead region of a gas turbine vane Part II  Stagnation region and near suction side  ASME 99 GT 49

Download or read book Film cooling effectiveness in the showerhead region of a gas turbine vane Part II Stagnation region and near suction side ASME 99 GT 49 written by Virginia C. Witteveld and published by . This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Indianapolis, Indiana, June 7-June 10, 1999.

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Experimental and Computational Investigation of Film Cooling on a Large Scale C3X Turbine Vane Including Conjugate Effects

Download or read book Experimental and Computational Investigation of Film Cooling on a Large Scale C3X Turbine Vane Including Conjugate Effects written by Thomas Earl Dyson and published by . This book was released on 2012 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study focused on the improvement of film cooling for gas turbine vanes using both computational and experimental techniques. The experimental component used a matched Biot number model to measure scaled surface temperature (overall effectiveness) distributions representative of engine conditions for two new configurations. One configuration consisted of a single row of holes on the pressure surface while the other used numerous film cooling holes over the entire vane including a showerhead. Both configurations used internal impingement cooling representative of a 1st vane. Adiabatic effectiveness was also measured. No previous studies had shown the effect of injection on the mean and fluctuating velocity profiles for the suction surface, so measurements were made at two locations immediately upstream of film cooling holes from the fully cooled cooling configuration. Different blowing conditions were evaluated. Computational tools are increasingly important in the design of advanced gas turbine engines and validation of these tools is required prior to integration into the design process. Two film cooling configurations were simulated and compared to past experimental work. Data from matched Biot number experiments was used to validate the overall effectiveness from conjugate simulations in addition to adiabatic effectiveness. A simulation of a single row of cooling holes on the suction side also gave additional insight into the interaction of film cooling jets with the thermal boundary layer. A showerhead configuration was also simulated. The final portion of this study sought to evaluate the performance of six RANS models (standard, realizable, and renormalization group k-[epsilon]; standard k-[omega]; k-[omega] SST; and Transition SST) with respect to the prediction of thermal boundary layers. The turbulent Prandtl number was varied to test a simple method for improvement of the thermal boundary layer predictions.

Book Blowing Ratio Effects on Film Cooling Effectiveness

Download or read book Blowing Ratio Effects on Film Cooling Effectiveness written by Kuo-Chun Liu and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The research focuses on testing the film cooling effectiveness on a gas turbine blade suction side surface. The test is performed on a five bladed cascade with a blow down facility. Four different blowing ratios are used in this study, which are 0.5, 1.0, 1.6, and 2.0; mainstream flow conditions are maintained at exit Mach number of 0.7, 1.1 and 1.3. Nitrogen is injected as the coolant so that the oxygen concentration levels can be obtained for the test surface. Based on mass transfer analogy, film cooling effectiveness can be computed with pressure sensitive paint (PSP) technique. The effect of blowing ratio on film cooling effectiveness is presented for each testing condition. The spanwise averaged effectiveness for each case is also presented to compare the blowing ratio and mainstream effect on film cooling effectiveness. Results show that due to effects of shock, the optimum blowing ratio is 1.6 for exit Mach number of 1.1 and 1.3; however; without the effects of shock, the optimum blowing ratio is 1.0 for exit Mach number of 0.7.

Book Effects of Free stream Turbulance and Surface Roughness on Film Cooling

Download or read book Effects of Free stream Turbulance and Surface Roughness on Film Cooling written by Donald L. Schmidt and published by . This book was released on 1996 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress & Exhibition, Birmingham, UK, Jun 10-13, 1996.

Book Suction side film cooling of a first stage gas turbine vane

Download or read book Suction side film cooling of a first stage gas turbine vane written by Marcia Inez Ethridge and published by . This book was released on 2000 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Prediction of Film Cooling on Gas Turbine Airfoils

Download or read book Prediction of Film Cooling on Gas Turbine Airfoils written by and published by . This book was released on 1994 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications

Download or read book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications written by Raymond Strong Colladay and published by . This book was released on 1972 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.