EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Effects of Leading Edge Film Cooling and Surface Roughness on the Downstream Film Cooling Along a Transonic Turbine Blade for Low and High Free Stream Turbulence

Download or read book Effects of Leading Edge Film Cooling and Surface Roughness on the Downstream Film Cooling Along a Transonic Turbine Blade for Low and High Free Stream Turbulence written by and published by . This book was released on 2008 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is the culmination of a two year effort to demonstrate the capability for performing near wall high resolution Time Resolved Particle Image Velocimetry (TRDPIV) measurements in a transonic turbine. Performing TRDPIV in high speed wall bounded flows with high resolution/magnification often posses significant difficulties. For this reason, two preliminary studies where conducted in order to further understand the challenges that would be present in this type of environment. Hardware and algorithm advancements and developments ultimately enabled performing TRDPIV in the transonic cascade facility. However, high pressure, high speed and the turbine blade complex geometries (high curvature and acceleration) significantly inhibit our ability to deliver homogeneous distribution of flow tracers, especially in the near wall region resulting in low quality measurements and regions with randomly missing data. In addition to our experimental results this effort delivers a novel advanced data reconstruction methodology based on proper orthogonal decomposition that was developed to overcome the aforementioned limitation. The following report documents in detail the methods and results generated throughout this effort.

Book Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer

Download or read book Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer written by Vijay K. Garg and published by . This book was released on 1995 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.

Book High mainstream turbulence effects on film cooling of a turbine blade leading edge

Download or read book High mainstream turbulence effects on film cooling of a turbine blade leading edge written by Christopher Ashleigh Johnston and published by . This book was released on 1999 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1997 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Book Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

Download or read book Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-27 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model. Han, J. C. and Ekkad, S. V. and Du, H. and Teng, S. Glenn Research Center NAG3-1656; RTOP 714-01-4A

Book Film Cooling Visualization and Heat Transfer on Transonic Turbine Blades

Download or read book Film Cooling Visualization and Heat Transfer on Transonic Turbine Blades written by and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study is an investigation of the film cooling effectiveness and heat transfer coefficient of a two-dimensional turbine rotor blade in a linear transonic cascade. Experiments were performed in Virginia Tech's Cascade Wind Tunnel with an exit Mach number of 1.2 and an exit Reynolds number of 5 x 10 (exp 6) to simulate real engine flow conditions. The freestream and coolant flows were maintained at a total temperature ratio of 2 +0.4 and a total pressure ration of 1.04. The freestream turbulence was approximately 1%. There are six rows of staggered, discrete cooling holes on and near the leading edge of the blade in a showerhead configuration. Cooled air was used as the coolant. Experiments were performed with and without film cooling on the surface of the blade. The heat transfer coefficient was found to increase with the addition of film cooling an average of 14% overall and to a maximum of 26% at the first gauge location. The average film cooling effectiveness that suggest either a transition from a laminar to a turbulent film regime or the regime or the existence of three-dimensionality in the flow-field over the gauges.

Book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Book Three dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading edge Model

Download or read book Three dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading edge Model written by Douglas Stenger and published by . This book was released on 2009 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present study is a three-dimensional numerical investigation of the effectiveness of film cooling for a turbine blade leading-edge model with both a single and a three-hole cooling configuration. The model used has the same dimensions as those in the experimental investigation of Ou and Rivir (2006). It consists of a half cylinder with a flat after-body, and well represents the leading edge of a turbine blade. The single coolant hole is situated approximately at the spanwise center of the cylindrical model, and makes an angle of 21.5 degrees to the leading edge and 20 degrees to the spanwise direction. For the three-hole configuration, the center hole is positioned the same as the single hole in the single-hole configuration, with the adjacent holes located at a spanwise distance of 37.4 mm on either side of the center hole. Multi-block grids were generated using GridGen, and the flows were simulated using the flow solver Fluent. A highly clustered structured C-grid was developed around the leading edge of the model. The outer unstructured-grid domain represents the wind tunnel as used in the experimental study of Ou and Rivir (2006), and the leading-edge model is located at the center of the domain. Simulations were carried out for blowing ratios, M, ranging from 0.75 to 2.0. Turbulence was represented using the k-? shear-stress transport (SST) model, and the flow was assumed to have a free-stream turbulence intensity of 0.75%. Two types of boundary conditions were used to represent the blade wall: an adiabatic surface, and a conductive surface. The adiabatic-wall results over-predicted the film-cooling effectiveness in the far downstream region for low blowing ratios. Also, in the vicinity of the cooling hole, an increase in blowing ratio resulted in higher film cooling effectiveness than observed in the experiments. It should be noted that the steady RANS-based turbulence model used under-predicts the interaction between the coolant and mainstream flow near the cooling-pipe exit. The conductive-wall results show a much closer agreement with experimental data for film effectiveness as compared to the adiabatic-wall predictions. Simulations were also performed with higher values of turbulence intensity at the cooling-hole inlet, and these predicted the coolant-mainstream interaction and the film-cooling effectiveness more accurately. Finally, a novel concept of pulsing the coolant flow was implemented so as to achieve film-cooling effectiveness equivalent to that with constant cooling, but with reduced overall coolant air, thereby enhancing turbine efficiency. Pulsed cooling with pulsing frequency PF = 5 and 10Hz, and duty cycle DC = 50%, shows the greatest cooling effects. The three-hole cooling results indicate that the 49 mm spanwise distance used for computing the spanwise-averaged values for film-cooling effectiveness accounts for all of the film-coolant spreading provided by the single hole. Also, the neighboring cooling holes contribute little film cooling to the 49 mm spanwise distance. The most significant new finding in this work is that the inclusion of wall conductance is the main factor responsible for reproducing the experimental data.

Book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1995 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Film Cooling and Turbine Blade Heat Transfer

Download or read book Film Cooling and Turbine Blade Heat Transfer written by and published by . This book was released on 1982 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects

Download or read book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects written by Laurene D. Dobrowolski and published by . This book was released on 2009 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations and experiments were run to study heat transfer and overall effectiveness for a simulated turbine blade leading edge. Computational predictions were run for a film cooled leading edge model using a conjugate numerical method to predict the normalized "metal" temperatures for the model. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperatures, i.e. overall effectiveness, using a specially designed high conductivity model. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along the downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined. Also of interest was the validity of Taw as the driving temperature for heat transfer into the blade, and this was examined via computations. Overall, this assumption gave reasonable results except near the stagnation line. Experiments were also conducted on a leading edge with no film cooling to gain a better understanding of the additional cooling provided by film cooling. Heat flux was also measured and external and internal heat transfer coefficients were determined. The results showed roughly constant overall effectiveness on the external surface.

Book Effects of Shocks on the Unsteady Heat Transfer in a Film Cooled Transonic Turbine Cascade

Download or read book Effects of Shocks on the Unsteady Heat Transfer in a Film Cooled Transonic Turbine Cascade written by and published by . This book was released on 2001 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental program was performed to study the effects of high strength shocks on the film cooling heat transfer in a transonic turbine blade. Shocks stronger than seen in actual engines were generated by a shock tube and directed to pass into the cascade upstream of a linear set of blades. The results indicate that the increased strength of the shocks do not disrupt the boundary layer on the blade. Therefore, the heat transfer is still predictable by the methods determined for lower strength shocks, as reported in the attached two papers (presented in Munich during this research program). As a transition to work on high free-stream turbulence effects, initial results for a blown grid were obtained in low speed flow. The corresponding report is attached, but has not yet been published.

Book Effects of varying turbulence intensities and integral length scales on film cooling of a turbine blade leading edge

Download or read book Effects of varying turbulence intensities and integral length scales on film cooling of a turbine blade leading edge written by Marcus Alan McWaters and published by . This book was released on 2000 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book The Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1996 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Film Hole Shape on Turbine Blade Film Cooling Performance

Download or read book Effect of Film Hole Shape on Turbine Blade Film Cooling Performance written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-05-30 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.Han, J. C. and Teng, S.Glenn Research CenterHEAT TRANSFER COEFFICIENTS; COOLANTS; TEMPERATURE PROFILES; SUCTION; TURBINE BLADES; HEAT MEASUREMENT; FILM COOLING; BOUNDARY LAYER TRANSITION; CASCADE WIND TUNNELS; CYLINDRICAL BODIES; EJECTION; GAS TURBINES; HOLE DISTRIBUTION (MECHANICS); LIQUID CRYSTALS; LOW SPEED; THERMAL PROTECTION; THERMOCOUPLES; WIND TUNNELS

Book Journal of Fluids Engineering

Download or read book Journal of Fluids Engineering written by and published by . This book was released on 2004 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: