EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Effects of Increasing the Allowable Compressive Stress at Release on the Shear Strength of Prestressed Concrete Girders

Download or read book Effects of Increasing the Allowable Compressive Stress at Release on the Shear Strength of Prestressed Concrete Girders written by Christopher Heckmann and published by . This book was released on 2008 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Allowable Compressive Stress at Prestress Transfer

Download or read book Allowable Compressive Stress at Prestress Transfer written by Brian Schnittker and published by . This book was released on 2008 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shear Capacity of in Service Prestressed Concrete Bridge Girders

Download or read book Shear Capacity of in Service Prestressed Concrete Bridge Girders written by Paul Barr and published by . This book was released on 2010 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design procedure to calculate the shear capacity of bridge girders that was used forty years ago is very different than those procedures that are recommended in the current AASHTO LRFD Specifications. As a result, many bridge girders that were built forty years ago do not meet current design standards, and in some cases warrant replacement due to insufficient calculated shear capacity. However despite this insufficient calculated capacity, these bridge girders have been found to function adequately in service with minimal signs of distress. The objective of this research was to investigate the actual in service capacity of prestressed concrete girders that have been in service over an extended period of time.

Book Transportation Research Record

Download or read book Transportation Research Record written by and published by . This book was released on 1999 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shear Capacity of High Strength Prestressed Concrete Girders

Download or read book Shear Capacity of High Strength Prestressed Concrete Girders written by David L. Hartmann and published by . This book was released on 1988 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Performance of Precast  Prestressed Concrete I girders Employing 0 7 in  Diameter Prestressing Strands Under Shear critical Loading Conditions

Download or read book Performance of Precast Prestressed Concrete I girders Employing 0 7 in Diameter Prestressing Strands Under Shear critical Loading Conditions written by Alex Tyler Katz and published by . This book was released on 2016 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of precast, pretensioned concrete elements are currently fabricated using 0.5- or 0.6-in. diameter prestressing strands. However, in recent years, potential benefits such as reduced fabrication costs and extended span capabilities have led to an interest in using larger-diameter 0.7-in. strands in the pretensioning industry. Such an increase in the diameter of strands might impact the shear strength of pretensioned girders due to the possibility of atypical failure modes that are not considered in current design provisions. An experimental program was conducted to study the effects of using 0.7-in. prestressing strands on the performance of precast, prestressed concrete I-girders under shear-critical loading conditions. Four full-scale pretensioned Texas bulb-tee girders (Tx-girders) employing 0.7-in. strands were fabricated and tested at Ferguson Structural Engineering Laboratory at the University of Texas at Austin. The mild steel reinforcement in the specimens was detailed according to standard drawings by the Texas Department of Transportation for girders employing 0.6-in. strands. The test program investigated the shear failure in girders with different concrete release strengths, overall member depths, shear span-to-depth ratios, and strand patterns. Analysis of the results revealed clear signs of atypical shear failure mechanisms in all specimens. Considerable strand slip was recorded at both ends of the specimens prior to peak load. In three of the specimens, the shear failure resulted in prominent horizontal cracks at the interface between the web and the bottom flange. However, all specimens demonstrated significant diagonal cracking prior to failure. Yielding of the stirrups was also confirmed in all specimens, indicating a shear-tension failure. The capacities of all specimens were conservatively estimated using the general procedure in AASHTO LRFD Bridge Design Specifications and the detailed method in ACI 318-14. The findings of this study reveal no concerns regarding the performance of existing design provisions in predicting the shear strength of Tx-girders that employ 0.7-in. diameter prestressing strands.

Book Applied Mechanics Reviews

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1974 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings Symposium Sharm El Sheikh

Download or read book Proceedings Symposium Sharm El Sheikh written by FIB – International Federation for Structural Concrete and published by FIB - Féd. Int. du Béton. This book was released on 2000-03-01 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Towards a rational understanding of shear in beams and slabs

Download or read book Towards a rational understanding of shear in beams and slabs written by fib Fédération internationale du béton and published by FIB - Féd. Int. du Béton. This book was released on 2018-05-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliable performance of beams and slabs in shear is essential for the safety and also for the serviceability of reinforced concrete structures. A possible failure in shear is usually a brittle failure, which underlines the importance of the correct specification of the load carrying capacity in shear. The knowledge of performance in shear is steadily developing and it is now obvious that older structures were not always designed in accordance with contemporary requirements. The increasing load – mainly on bridges – requires the assessment of existing structures, often followed by their strengthening. An appropriate understanding of actual performance of concrete structures in shear is therefore of primary interest. The workshop which was held in Zürich in 2016 brought together a significant number of outstanding specialists working in the field of shear design, who had a chance to exchange their opinions and proposals for improving the current knowledge of shear behaviour in beams and slabs. The specialists came from different parts of the world, which made the workshop general and representative. The workshop was organised by fib Working Party 2.2.1 “Shear in Beams” (convened by O. Bayrak), which is a part of fib Commission 2 "Analysis and Design". Individual contributions mainly address shear in beams with low transversal reinforcement. It is crucial because many existing structures lack such reinforcement. Different theories, e.g. Critical Shear Crack Theory (CSCT), Modified Compression Field Theory (MCFT), Multi-Action Shear Model (MASM), etc. were presented and compared with procedures used in selected national codes or in the fib Model Code 2010. The models for shear design were often based to a great extent on empirical experience. The refined presented models tend to take into account the physical mechanisms in structures more effectively. A brittle behaviour in shear requires not only to check the equilibrium and failure load, but also to follow the progress of failure, including the crack development and propagation, stress redistribution, etc. The significance of the size effect – which causes the nominal strength of a large structure to be smaller than that of a small structure – was pointed out. Nowadays, the fibre reinforcement is used more than before since it allows significant labour costs savings in the construction industry. The contribution of fibres is suitable for shear transfer. It is very convenient that not only ordinary fibre reinforced elements were addressed but also the UHPFRC beams. The production of this new material is indeed growing, while the development of design recommendations has not been sufficiently fast. Fatigue resistance of structures with low shear reinforcement is also an important issue, which was also addressed in this bulletin. It cannot be neglected in prestressed bridges, which are exposed to dynamic loads. A comprehensive understanding of the shear behaviour is necessary. Although many laboratory experiments are carried out, they are suitable only to a limited extent. New testing methods are being developed and show promising results, e.g. digital image correlation. An actual structure performance should rather be tested on a large scale, ideally on real structures under realistic loading conditions.ii The papers presented in the bulletin are a basis for the discussion in view of the development of updated design rules for the new fib Model Code (MC2020), which is currently under preparation. fib Bulletins like this one, dealing with shear, help to transfer knowledge from research to design practice. The authors are convinced that it will lead to better new structures design of as well as to savings and to a safety increase in older existing structures, whose future is often decided now.

Book Design of Prestressed Concrete to AS3600 2009

Download or read book Design of Prestressed Concrete to AS3600 2009 written by Raymond Ian Gilbert and published by CRC Press. This book was released on 2016-02-17 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of structures in general, and prestressed concrete structures in particular, requires considerably more information than is contained in building codes. A sound understanding of structural behaviour at all stages of loading is essential. This textbook presents a detailed description and explanation of the behaviour of prestressed concret

Book Building Code Requirements for Structural Concrete  ACI 318 08  and Commentary

Download or read book Building Code Requirements for Structural Concrete ACI 318 08 and Commentary written by ACI Committee 318 and published by American Concrete Institute. This book was released on 2008 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.

Book Lightweight aggregate concrete for marine structures

Download or read book Lightweight aggregate concrete for marine structures written by FIB – International Federation for Structural Concrete and published by FIB - International Federation for Structural Concrete. This book was released on 1978-04-01 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Building Code Requirements for Structural Concrete  ACI 318 05  and Commentary  ACI 318R 05

Download or read book Building Code Requirements for Structural Concrete ACI 318 05 and Commentary ACI 318R 05 written by ACI Committee 318 and published by American Concrete Institute. This book was released on 2005 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 2024 25SSC JE Civil Engineering

Download or read book 2024 25SSC JE Civil Engineering written by YCT Expert Team and published by YOUTH COMPETITION TIMES. This book was released on with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2024-25SSC JE Civil Engineering Study Material

Book Evaluation and Repair Procedures for Precast prestressed Concrete Girders with Longitudinal Cracking in the Web

Download or read book Evaluation and Repair Procedures for Precast prestressed Concrete Girders with Longitudinal Cracking in the Web written by Maher K. Tadros and published by Transportation Research Board. This book was released on 2010 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report establishes a user's manual for the acceptance, repair, or rejection of precast/prestressed concrete girders with longitudinal web cracking. The report also proposes revisions to the AASHTO LRFD Bridge Design Specifications and provides recommendations to develop improved crack control reinforcement details for use in new girders. The material in this report will be of immediate interest to bridge engineers.

Book Design of Prestressed Concrete to Eurocode 2

Download or read book Design of Prestressed Concrete to Eurocode 2 written by Raymond Ian Gilbert and published by CRC Press. This book was released on 2017-01-27 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of structures in general, and prestressed concrete structures in particular, requires considerably more information than is contained in building codes. A sound understanding of structural behaviour at all stages of loading is essential. This textbook presents a detailed description and explanation of the behaviour of prestressed concrete members and structures both at service loads and at ultimate loads and, in doing so, provide a comprehensive and up-to-date guide to structural design. Much of the text is based on first principles and relies only on the principles of mechanics and the properties of concrete and steel, with numerous worked examples. However, where the design requirements are code specific, this book refers to the provisions of Eurocode 2: Design of Concrete Structures and, where possible, the notation is the same as in Eurocode 2. A parallel volume is written to the Australian Standard for Concrete Structures AS3600-2009. The text runs from an introduction to the fundamentals to in-depth treatments of more advanced topics in modern prestressed concrete structures. It suits senior undergraduate and graduate students and also practising engineers who want comprehensive introduction to the design of prestressed concrete structures. It retains the clear and concise explanations and the easy-to-read style of the first edition, but the content has been extensively re-organised and considerably expanded and updated. New chapters cover design procedures, actions and loads; prestressing systems and construction requirements; connections and detailing; and design concepts for prestressed concrete bridges. The topic of serviceability is developed extensively throughout. All the authors have been researching and teaching the behaviour and design of prestressed concrete structures for over thirty-five years and the proposed new edition of the book reflects this wealth of experience. The work has also gained much from Professor Gilbert active and long-time involvement in the development of standards for concrete buildings and concrete bridges.