Download or read book Enhanced Oil Recovery II written by E.C. Donaldson and published by Elsevier. This book was released on 1989-07-01 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by foremost experts in the field, and formulated with attention to classroom use for advanced studies in reservoir characterization and processes, this book reviews and summarises state-of-the-art progress in the field of enhanced oil recovery (EOR). All of the available techniques: alkaline flooding; surfactant flooding; carbon dioxide flooding; steam flooding; in-situ combustion; gas injection; miscible flooding; microbial recovery; and polymer flooding are discussed and compared. Together with Volume I, it presents a complete text on enhanced recovery technology and, hence, is an almost indispensible reference text.This second volume compliments the first by presenting as complete an analysis as possible of current oilfield theory and technology, for accomplishment of maximum production of oil. Many different processes have been developed and field tested for enhancement of oil recovery. The emerging philosophy is that no single process is applicable to all petroleum reservoirs. Each must be treated as unique, and carefully evaluated for characteristics that are amenable to one or two of the proven technologies of EOR. This book will aid the engineer in field evaluation and selection of the best EOR technology for a given oilfield. Even the emerging technology of microbial applications to enhance oil recovery are reviewed and explained in terms that are easily understood by field engineers.The book is presented in a manner suitable for graduate studies. The only addition required of teachers is to supply example problems for class work. An appendix includes a reservoir mathematic model and program for general application that can also be used for teaching.
Download or read book Thermal Recovery written by Michael Prats and published by . This book was released on 1982 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Relative Permeability Of Petroleum Reservoirs written by M.M. Honarpour and published by CRC Press. This book was released on 2018-01-18 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book enables petroleum reservoir engineers to predict the flow of fluids within a hydrocarbon deposit. Laboratory techniques are described for both steady-state and unsteady state measurements, and the calculation of relative permeability from field data is illustrated. A discussion of techniques for determing wettability is included, along with theoretical and empirical methods for the calculation of relative permeability, and prediction techniques. Contents include: Measurement of Rock Relative Permeability; Two-Phase Relative Permeability; Factors Affecting Two-Phase Relative Permeability; Three-Phase Relative Permeability; and Index.
Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).
Download or read book SPE Reservoir Engineering written by and published by . This book was released on 1994 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Heavy crude and tar sands written by Richard F. Meyer and published by . This book was released on 1991 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals of Applied Reservoir Engineering written by Richard Wheaton and published by Gulf Professional Publishing. This book was released on 2016-04-20 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Applied Reservoir Engineering introduces early career reservoir engineers and those in other oil and gas disciplines to the fundamentals of reservoir engineering. Given that modern reservoir engineering is largely centered on numerical computer simulation and that reservoir engineers in the industry will likely spend much of their professional career building and running such simulators, the book aims to encourage the use of simulated models in an appropriate way and exercising good engineering judgment to start the process for any field by using all available methods, both modern simulators and simple numerical models, to gain an understanding of the basic 'dynamics' of the reservoir –namely what are the major factors that will determine its performance. With the valuable addition of questions and exercises, including online spreadsheets to utilize day-to-day application and bring together the basics of reservoir engineering, coupled with petroleum economics and appraisal and development optimization, Fundamentals of Applied Reservoir Engineering will be an invaluable reference to the industry professional who wishes to understand how reservoirs fundamentally work and to how a reservoir engineer starts the performance process. - Covers reservoir appraisal, economics, development planning, and optimization to assist reservoir engineers in their decision-making. - Provides appendices on enhanced oil recovery, gas well testing, basic fluid thermodynamics, and mathematical operators to enhance comprehension of the book's main topics. - Offers online spreadsheets covering well test analysis, material balance, field aggregation and economic indicators to help today's engineer apply reservoir concepts to practical field data applications. - Includes coverage on unconventional resources and heavy oil making it relevant for today's worldwide reservoir activity.
Download or read book Fossil Energy Update written by and published by . This book was released on 1977 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Reservoir Engineering Handbook written by Tarek H. Ahmed and published by Gulf Professional Publishing. This book was released on 2001 with total page 1212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book wxplains the fundamentals of reservoir engineering and their practical application in conducting a comprehensive field study.Two new chapters have been included in this second edition: chapter 14 and 15.
Download or read book Modern Chemical Enhanced Oil Recovery written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2010-11-25 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques to the field's productive life generally by injecting water or gas to displace oil and drive it to a production wellbore, resulting in the recovery of 20 to 40 percent of the original oil in place. In the past two decades, major oil companies and research organizations have conducted extensive theoretical and laboratory EOR (enhanced oil recovery) researches, to include validating pilot and field trials relevant to much needed domestic commercial application, while western countries had terminated such endeavours almost completely due to low oil prices. In recent years, oil demand has soared and now these operations have become more desirable. This book is about the recent developments in the area as well as the technology for enhancing oil recovery. The book provides important case studies related to over one hundred EOR pilot and field applications in a variety of oil fields. These case studies focus on practical problems, underlying theoretical and modelling methods, operational parameters (e.g., injected chemical concentration, slug sizes, flooding schemes and well spacing), solutions and sensitivity studies, and performance optimization strategies. The book strikes an ideal balance between theory and practice, and would be invaluable to academicians and oil company practitioners alike. - Updated chemical EOR fundamentals providing clear picture of fundamental concepts - Practical cases with problems and solutions providing practical analogues and experiences - Actual data regarding ranges of operation parameters providing initial design parameters - Step-by-step calculation examples providing practical engineers with convenient procedures
Download or read book ERDA Energy Research Abstracts written by and published by . This book was released on 1983 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Journal of Canadian Petroleum Technology written by and published by . This book was released on 2003 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Energy Research Abstracts written by and published by . This book was released on 1985 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Efficient Simulation of Thermal Enhanced Oil Recovery Processes written by Zhouyuan Zhu and published by Stanford University. This book was released on 2011 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating thermal processes is usually computationally expensive because of the complexity of the problem and strong nonlinearities encountered. In this work, we explore novel and efficient simulation techniques to solve thermal enhanced oil recovery problems. We focus on two major topics: the extension of streamline simulation for thermal enhanced oil recovery and the efficient simulation of chemical reaction kinetics as applied to the in-situ combustion process. For thermal streamline simulation, we first study the extension to hot water flood processes, in which we have temperature induced viscosity changes and thermal volume changes. We first compute the pressure field on an Eulerian grid. We then solve for the advective parts of the mass balance and energy equations along the individual streamlines, accounting for the compressibility effects. At the end of each global time step, we account for the nonadvective terms on the Eulerian grid along with gravity using operator splitting. We test our streamline simulator and compare the results with a commercial thermal simulator. Sensitivity studies for compressibility, gravity and thermal conduction effects are presented. We further extended our thermal streamline simulation to steam flooding. Steam flooding exhibits large volume changes and compressibility associated with the phase behavior of steam, strong gravity segregation and override, and highly coupled energy and mass transport. To overcome these challenges we implement a novel pressure update along the streamlines, a Glowinski scheme operator splitting and a preliminary streamline/finite volume hybrid approach. We tested our streamline simulator on a series of test cases. We compared our thermal streamline results with those computed by a commercial thermal simulator for both accuracy and efficiency. For the cases investigated, we are able to retain solution accuracy, while reducing computational cost and gaining connectivity information from the streamlines. These aspects are useful for reservoir engineering purposes. In traditional thermal reactive reservoir simulation, mass and energy balance equations are solved numerically on discretized reservoir grid blocks. The reaction terms are calculated through Arrhenius kinetics using cell-averaged properties, such as averaged temperature and reactant concentrations. For the in-situ combustion process, the chemical reaction front is physically very narrow, typically a few inches thick. To capture accurately this front, centimeter-sized grids are required that are orders of magnitude smaller than the affordable grid block sizes for full field reservoir models. To solve this grid size effect problem, we propose a new method based on a non-Arrhenius reaction upscaling approach. We do not resolve the combustion front on the grid, but instead use a subgrid-scale model that captures the overall effects of the combustion reactions on flow and transport, i.e. the amount of heat released, the amount of oil burned and the reaction products generated. The subgrid-scale model is calibrated using fine-scale highly accurate numerical simulation and laboratory experiments. This approach significantly improves the computational speed of in-situ combustion simulation as compared to traditional methods. We propose the detailed procedures to implement this methodology in a field-scale simulator. Test cases illustrate the solution consistency when scaling up the grid sizes in multidimensional heterogeneous problems. The methodology is also applicable to other subsurface reactive flow modeling problems with fast chemical reactions and sharp fronts. Displacement front stability is a major concern in the design of all the enhanced oil recovery processes. Historically, premature combustion front break through has been an issue for field operations of in-situ combustion. In this work, we perform detailed analysis based on both analytical methods and numerical simulation. We identify the different flow regimes and several driving fronts in a typical 1D ISC process. For the ISC process in a conventional mobile heavy oil reservoir, we identify the most critical front as the front of steam plateau driving the cold oil bank. We discuss the five main contributors for this front stability/instability: viscous force, condensation, heat conduction, coke plugging and gravity. Detailed numerical tests are performed to test and rank the relative importance of all these different effects.
Download or read book Polymer Flooding written by W. Littmann and published by Elsevier. This book was released on 1988-09-01 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10 to 15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. The basic mechanisms of the process are described and criteria given where it may be employed. Basic elements of the chemistry of EOR-polymers are provided. The fundamentals of polymer physics, such as rheology, flow in porous media and adsorption, are derived. Practical hints on mixing and testing of polymers in the laboratory are given, as well as instructions for their application in the oil field. Polymer flooding is illustrated by some case histories and the economics of the methods are examined. For the essential subjects, example calculations are added. An indispensable book for reservoir engineers, production engineers and laboratory technicians within the petroleum industry.
Download or read book SPE Reservoir Evaluation Engineering written by and published by . This book was released on 2008 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Processing of Heavy Crude Oils written by Ramasamy Marappa Gounder and published by . This book was released on 2019-12-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: