EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Effect of Surface Pressure Distribution of Gas Turbine Vane on Film Cooling

Download or read book Effect of Surface Pressure Distribution of Gas Turbine Vane on Film Cooling written by Takafumi Nakahara and published by . This book was released on 1981 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Prediction of Film Cooling on Gas Turbine Airfoils

Download or read book Prediction of Film Cooling on Gas Turbine Airfoils written by and published by . This book was released on 1994 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades

Download or read book Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades written by Vijay K. Garg and published by . This book was released on 1995 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress & Exposition, Houston, Texas - June 5-8, 1995.

Book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer

Download or read book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-23 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils. Hylton, L. D. and Nirmalan, V. and Sultanian, B. K. and Kaufman, R. M. Unspecified Center EQUIPMENT SPECIFICATIONS; FILM COOLING; HEAT TRANSFER; LEADING EDGES; STRUCTURAL DESIGN; VANES; AIRCRAFT ENGINES; CASCADE FLOW; DATA PROCESSING; GAS TURBINES; HIGH TEMPERATURE; PARAMETERIZATION; TWO DIMENSIONAL FLOW...

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book Film Effectiveness Performance for a Shaped Hole on the Suction Side of a Scaled up Turbine Blade

Download or read book Film Effectiveness Performance for a Shaped Hole on the Suction Side of a Scaled up Turbine Blade written by Jacob Damian Moore and published by . This book was released on 2018 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface curvature has been shown to have significant effects on the film cooling performance of round holes, but the present literature includes very few studies dedicated to curvature’s effects on shaped hole geometries despite their prevalence in turbine blade and vane designs. Experiments were performed on two rows of holes placed on the suction side of a scaled-up gas turbine blade model in a low-Mach-number linear cascade wind tunnel. The test facility was set up to match a high-Mach-number pressure distribution without modifying the blade’s geometry or including contoured end walls to accelerate the flow. By adjusting the positions of the movable walls in the tunnel test section, the suction side pressure distribution could be matched to the design distribution. One row was placed in a region of high convex surface curvature; the other, in a region of low convex curvature. Other geometric and flow parameters near the rows were matched in the design of the experiment, including hole geometry and spacing. The hole geometry was a standard 7-7-7 shaped hole. In addition, local freestream conditions for the rows were measured and set to match as closely as possible. Comparison of the adiabatic effectiveness results from the two rows revealed trends similar to those seen in previous literature for round holes. The high curvature row outperformed the low curvature row at lower coolant injection rates, having wider jets and higher centerline effectiveness. But as the injection rate was increased, the low curvature row surpassed the high curvature row in effectiveness. The driver behind this behavior was the surface-normal pressure gradient that arose from the convex surface curvature. As flow traveled around the surface, centripetal acceleration produced a pressure gradient directed towards the surface, effectively pushing jets toward the blade wall. However, at higher blowing ratios, the jets’ high momenta overcame the effects of this pressure gradient. At these injection rates, the high curvature row’s jets’ trajectories did not follow the surface as it curved away. The high surface curvature exacerbated the adverse effects of jet separation on film cooling performance.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Film Cooling on the Pressure Surface of a Turbine Vane

Download or read book Film Cooling on the Pressure Surface of a Turbine Vane written by James W. Gauntner and published by . This book was released on 1977 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Film-cooling-air ejection from the pressure surface of a turbine vane was investigated, and experimental data are presented. This investigation was conducted in a four-vane cascade on a J75-size turbine vane that had a double row of staggered holes in line with the primary flow and located downstream of the leading edge region. The results showed that: (1) the average effectiveness of film-convection cooling was higher than that of either film cooling or convection cooling separately; (2) the addition of small quantities of film-cooling air always increased the cooling effectiveness relative to the zero-injection case; however, (3) the injected film must exceed a certain threshold value to obtain a beneficial effect of film cooling relative to convection cooling alone.

Book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications

Download or read book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications written by Raymond Strong Colladay and published by . This book was released on 1972 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

Book Experimental and Computational Investigation of Film Cooling on a Large Scale C3X Turbine Vane Including Conjugate Effects

Download or read book Experimental and Computational Investigation of Film Cooling on a Large Scale C3X Turbine Vane Including Conjugate Effects written by Thomas Earl Dyson and published by . This book was released on 2012 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study focused on the improvement of film cooling for gas turbine vanes using both computational and experimental techniques. The experimental component used a matched Biot number model to measure scaled surface temperature (overall effectiveness) distributions representative of engine conditions for two new configurations. One configuration consisted of a single row of holes on the pressure surface while the other used numerous film cooling holes over the entire vane including a showerhead. Both configurations used internal impingement cooling representative of a 1st vane. Adiabatic effectiveness was also measured. No previous studies had shown the effect of injection on the mean and fluctuating velocity profiles for the suction surface, so measurements were made at two locations immediately upstream of film cooling holes from the fully cooled cooling configuration. Different blowing conditions were evaluated. Computational tools are increasingly important in the design of advanced gas turbine engines and validation of these tools is required prior to integration into the design process. Two film cooling configurations were simulated and compared to past experimental work. Data from matched Biot number experiments was used to validate the overall effectiveness from conjugate simulations in addition to adiabatic effectiveness. A simulation of a single row of cooling holes on the suction side also gave additional insight into the interaction of film cooling jets with the thermal boundary layer. A showerhead configuration was also simulated. The final portion of this study sought to evaluate the performance of six RANS models (standard, realizable, and renormalization group k-[epsilon]; standard k-[omega]; k-[omega] SST; and Transition SST) with respect to the prediction of thermal boundary layers. The turbulent Prandtl number was varied to test a simple method for improvement of the thermal boundary layer predictions.

Book Effects of a Ceramic Coating on Metal Temperatures of an Air cooled Turbine Vane

Download or read book Effects of a Ceramic Coating on Metal Temperatures of an Air cooled Turbine Vane written by Herbert J. Gladden and published by . This book was released on 1980 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: