EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Effect of Substructure Stiffness on the Performance of Integral Abutment Bridges Under Thermal Loads

Download or read book Effect of Substructure Stiffness on the Performance of Integral Abutment Bridges Under Thermal Loads written by Suhail Albhaisi and published by . This book was released on 2012 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research investigates the effect of substructure stiffness on the performance of short and medium span length Integral Abutment Bridges (IABs) subjected to thermal load. Various parameters such as foundation soil stiffness, pile orientation, pile type, and abutment geometry on the performance of IABs, are considered. Three-dimensional (3D) Finite Element (FE) models were developed using the FE software LUSAS to capture the behavior of IABs including the variations in displacement and rotation in the transverse direction for the various components of the superstructure as well as the substructure. Field measurements from a recently constructed two-span steel girder IAB were utilized to validate the 3D FE models. Using the validated model, a parametric study was carried out to study the effect of the above parameters on the performance of IABs under thermal loading using AASHTO-LRFD temperature ranges. The study shows that among the investigated parameters, the foundation soil stiffness stands as the most important factor that affects the performance of IABs. In general, the bridge behavior is more sensitive to the foundation soil stiffness during bridge contraction. The results from the study show considerable variations in displacement and rotation in the transverse direction for the various components of the superstructure and the substructure in relatively wide IABs. This research suggests that Prestressed Concrete Piles can be a viable alternative to steel H-Piles for short span bridges. It was also noticed that the stress level due to thermal loading in the various components of the bridge can be significantly reduced by enclosing the top part of the pile in an enclosure filled with crushed stone or loose sand. Moreover, the research suggests that the pile orientation has a minimum effect on the behavior of IABs. It also suggests that a slight increase in the abutment height can significantly reduce the displacement and rotation along the piles during bridge expansion. The research also suggests that 3D models are necessary to capture the behavior of IABs especially during bridge expansion. The research provides simple equations and charts to help bridge engineers calculate the displacement and rotation along the substructure.

Book Behavior of Semi integral Abutment Bridge with Turn back Wingwalls Supported on Drilled Shafts

Download or read book Behavior of Semi integral Abutment Bridge with Turn back Wingwalls Supported on Drilled Shafts written by Safiya Ahmed and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semi-integral abutment bridges are integral abutment bridges with a flexible interface at the abutment to reduce the force transferred to the foundation. Wingwalls in abutment and semi-integral abutment bridges are designed as retaining walls to avoid the sliding of the backfill soil behind the bridge abutments and roadways. Using turn-back wingwalls that are parallel to the bridge diaphragm can provide support for the parapets and minimize the total longitudinal pressure on the abutments. These walls are subjected to axial forces and bending moments due to the thermal movements. These forces can affect the orientation and the connection details of the wingwalls, which could cause cracks in the wingwalls. Despite several studies on integral abutment bridges, there are no studies that combined the behavior of the drilled shafts, footings, abutment walls, and the turnback wingwalls of semi-integral abutment bridges. The long-term performance of a semi-integral abutment bridge with turn-back wingwalls supported on drilled shafts in Ohio was investigated in this doctorate study by instrumenting five drilled shafts, footing, the forward abutment wall, and one of the wingwalls during construction. Strain and temperature were collected in 2017, 2018, and 2019. It was found that the seasonal and daily temperature changes have a significant effect on the changes in the strain in the substructure. The behavior of the abutment wall significantly affects the behavior of the wingwall, footing, and drilled shafts. It was also noticed that the behavior of the abutment was irreversible, and the top of the abutment wall and the top of the drilled shaft induced higher strain than the bottom. Cracks were noticed at the front face of the abutment wall and wingwall, and these cracks tended to close as the air temperature decreased and open as the air temperature increased. The extremely cold weather conditions induced tensile strain higher than the allowable strain at the top corner of the front face of the abutment wall and the rear face of the wingwall. Finite element results were compared with the field data, and the behavior of the substructure was achieved by the model. Parametric studies were conducted on the bridge substructure with different wingwall types and soil backfill. The results showed lower stiffness of soil backfill induces higher stresses in the bridge substructure. Moreover, inline wingwalls induce the highest thermal stresses in the substructure, while flared wingwalls induce the lowest thermal stress compared to the other types of wingwalls.

Book Sustainable Bridge Structures

Download or read book Sustainable Bridge Structures written by Khaled Mahmoud and published by CRC Press. This book was released on 2015-08-07 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ever-increasing traffic demands, coupled with deteriorating condition of bridge structures, present great challenges for maintaining a healthy transportation network. The challenges encompass a wide range of economic, environmental, and social constraints that go beyond the technical boundaries of bridge engineering. Those constraints compound

Book Behavior of High Performance Concrete Integral Abutment Bridges

Download or read book Behavior of High Performance Concrete Integral Abutment Bridges written by David Jonathan Knickerbocker and published by . This book was released on 2005 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Short and Long term Performance of a Skewed Integral Abutment Prestressed Concrete Bridge

Download or read book Short and Long term Performance of a Skewed Integral Abutment Prestressed Concrete Bridge written by Rami Ameer Bahjat and published by . This book was released on 2014 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents the behavior of a precast skewed integral abutment bridge (IAB) using the recently developed NEXT-F Beam section in particular. In order to understand the bridge response, a 3-dimensional finite element model of a bridge (Brimfield Bridge) was developed to examine the thermal effect on the response of the bridge structural components. Eighteen months of field monitoring including abutments displacements, abutment rotations, deck strains, and beam strains was conducted utilizing 136 strain gauges, 6 crackmeters, and 2 tiltmeters. The behavior of the NEXT beams during construction was examined by conducting hand calculation considering all factors that could affect strain readings captured by strain gauges embedded in the 6 beams. Parametric analysis and model validation were conducted considering the effect of soil conditions, distribution of thermal loads, and the coefficient of thermal expansion used for the analyses. Using the validated model, the effect pile orientation was investigated. All the results and illustration plots are presented in detail in this study. As a result of this study, the behavior of the NEXT beams during construction was explained. Long term behavior of the bridge was also explained using field data and FE model. Furthermore, it was concluded that the coefficient of thermal expansion of concrete and temperature variation along the bridge depth and transverse direction can have a significant effect on the strain readings and calculated response, respectively. Lastly, it was found that orienting piles with their web perpendicular on the bridge centerline or with their web perpendicular to the abutment centerline will result in small ratio of moment demand to moment capacity.

Book Integral Bridges

Download or read book Integral Bridges written by George L. England and published by Thomas Telford. This book was released on 2000 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work was commissioned by the Highways Agency to produce guidance for bridge designers by addressing the thermally induced soil/structure integration problem created by environmental changes of temperature and the associated cyclical displacements imposed on the granular backfill to the bridge abutments. It develops a better theoretical understanding of the cyclic performance, in particular the strain racheting in the backfill soil when in contact with a stiff structure. It also identifies the governing soil parameters and examines their influence in the interaction problem, develops numerical modelling procedures to predict interactive soil behaviour, and identifies and quantifies the controlling features of bridge structures relevant to the interaction problem.

Book Maximum Lengths of Integral Abutment Bridges Based on the Strength of Abutments and the Performance of Steel H piles Under Cyclic Thermal Loading

Download or read book Maximum Lengths of Integral Abutment Bridges Based on the Strength of Abutments and the Performance of Steel H piles Under Cyclic Thermal Loading written by Suahil M. Albhaisi and published by . This book was released on 2003 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Resistance of Integral Abutment Bridges

Download or read book Earthquake Resistance of Integral Abutment Bridges written by Robert J. Frosch and published by Purdue University Press. This book was released on 2008-05-01 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: intermediate length bridges. Integral abutment construction eliminates joints and bearings which reduce long-term maintenance costs. However, in the absence of joints and bearings, the bridge abutments and foundations must be able to accommodate lateral movements from thermal expansion and contraction of the superstructure and from seismic events. Previous research has focused on the response to thermal expansion and contraction. The current research examines the response of integral abutment bridges to seismic loading. A field investigation was conducted to examine the response of an integral abutment to lateral loading from thermal expansion and contraction. The results were used to calibrate analytical bridge models used to estimate displacements of the abutment during design seismic events. A laboratory investigation was conducted to estimate the lateral displacement capacity of the abutment based on the performance of the abutment-pile connection. Results of the field, analytical, and laboratory investigations were used to evaluate allowable bridge lengths based on seismic performance. Finally, design recommendations are provided to enhance the seismic performance of integral abutment bridges.

Book Experimental and Analytical Study of Integral abutment Bridges

Download or read book Experimental and Analytical Study of Integral abutment Bridges written by Brad Harold Sayers and published by . This book was released on 2000 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral-abutment bridges eliminate the expansion joints that are generally used to accommodate bridge length changes due to daily and annual temperature variations. Additional stresses and displacements due to the thermal loading are induced in these indeterminate structures that are not typically associated with bridge structures supported on pins and rollers. The goal of this research was to determine the effects of the thermal loading on two integral-abutment bridges. Extensive field monitoring was conducted on two, in-service, skewed, integral-abutment bridges located in central Iowa. The experimental program included long-term monitoring of longitudinal and transverse abutment displacements, relative displacements of the superstructure over the pier caps, strains in selected steel HP-shaped piles supporting the abutments, strains in several PC girders, bridge member temperatures, and end fixity of selected piles and girders in the abutments. The experimental temperature and displacement data was used to calibrate an ANSYS, finite-element model for each of the two monitored bridge structures. Experimental strains were verified and maximum strains due to the thermal loading were predicted for various members using the finite-element models.

Book Evaluation of Integral Abutments

Download or read book Evaluation of Integral Abutments written by and published by . This book was released on 2006 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 3D Finite Element Analysis of Integral Abutment Bridges Subjected to Thermal Loading

Download or read book 3D Finite Element Analysis of Integral Abutment Bridges Subjected to Thermal Loading written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral Abutment Bridges (IABs) are Jointless Bridges whereby the deck is continuous and monolithic with abutment walls. IABs are outperforming their non-integral counterparts in economy and safety. Their principal advantages are derived from the absence of expansion joints and sliding bearings in the deck, making them the most cost-effective system in terms of construction, maintenance, and longevity. The main purpose of constructing IABs is to prevent the corrosion of structure due to water seepage through joints. The simple and rapid construction provides smooth, uninterrupted deck that is aesthetically pleasing and safer for riding. The single structural unit increases the degree of redundancy enabling higher resistance to extreme events. However, the design of IABs not being an exact science poses certain critical issues. The continuity achieved by this construction results in thermally induced deformations. These in turn introduce a significantly complex and nonlinear soil-structure interaction into the response of abutment walls and piles of the IAB. The unknown soil response and its effect on the stresses in the bridge, creates uncertainties in the design. To gain a better understanding of the mechanism of load transfer due to thermal expansion, which is also dependent on the type of the soil adjacent to the abutment walls and piles, a 3D finite element analysis is carried out on a representative IAB using state-of-the-art finite element code ABAQUS/Standard 6.5-1. A literature review focusing on past numerical models of IABs is presented followed by details of the numerical model developed in this study using the interactive environment ABAQUS/CAE 6.5-1 along with the analysis details. A discussion of results for the analysis of the IAB with three different soil conditions and each experiencing three different temperature change scenarios is presented. Conclusions of the study and recommendations for future research wrap up the thesis. The advancement of knowledge enabled by this research will provide a basis for introduction of new guidelines in Kansas Bridge Design Manual.

Book Integral Abutment Bridges Under Thermal Loading

Download or read book Integral Abutment Bridges Under Thermal Loading written by James M. LaFave and published by . This book was released on 2017 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integral Abutment Bridges Under Thermal Loading

Download or read book Integral Abutment Bridges Under Thermal Loading written by James M. LaFave and published by . This book was released on 2016 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Detailed Study of Integral Abutment Bridges and Performance of Bridge Joints in Traditional Bridges

Download or read book Detailed Study of Integral Abutment Bridges and Performance of Bridge Joints in Traditional Bridges written by Brooke H. Quinn and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral Abutment Bridges (IABs) are jointless bridges in which the superstructure is cast monolithically with its substructure. Eliminating expansion joints from the superstructure reduces corrosion of bridge elements that typically result from leaking joints in traditional bridges. IABs have proven to be cost effective for both construction and life-cycle analysis. As a result, they are the standard single span highway bridge of choice by the majority of State Departments of Transportation (DOTs) across the country. Despite the widespread use of these bridges, there are no uniform guidelines in place. Factors such as pile orientation, design assumptions, maximum span length, skew angle, and curvature vary widely. A study of expansion joint performance was done to investigate typical problems with joints through information collected from meetings with Massachusetts DOT as well as survey results collected from DOT personnel from nine states in and around New England. Results highlight the many issues associated with expansion joints which have resulted in the preference to construct IABs whenever possible. The Vermont Agency of Transportation (VTrans) instrumented three IABs of increasing complexity for long term monitoring and analysis of their performance. The bridges include a straight bridge with 141 ft (43 m) span, a 15 degree skew bridge with 121 ft (37 m) span, and a two-span continuous curved structure with 11.25 degrees of curvature and 221 ft (68 m) total bridge length. This dissertation presents over five years of field data. Results are compared with three-dimensional finite element model predictions. Variations in response due to skew, curvature, and field conditions are addressed. The finite element models were the basis for a parametric study investigating the effect of pile orientation on IABs of varying length and skew angle. Results highlight the factors that affect optimal pile orientation to avoid pile yielding.

Book Parametric Study on Soil Structure Interaction Mechanisms Through A Three Dimensional Finite Element Numerical Modelling of Palladium Drive Integral Abutment Bridge in Ontario

Download or read book Parametric Study on Soil Structure Interaction Mechanisms Through A Three Dimensional Finite Element Numerical Modelling of Palladium Drive Integral Abutment Bridge in Ontario written by Yoon-Gi Min and published by . This book was released on 2013 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "Integral Abutment Bridges" is used broadly all over the world these days. While the expansion joints used in bridges were once a scientifically proved cure to the problem of natural expansion and contraction, there are the excessive maintenance costs being accumulated annually due to the deterioration of essential functions from deicing chemicals and debris. This drawback triggered the advent of Integral Abutment Bridges. The performance of Integral Abutment Bridges at almost no extra costs in seasonal and daily cyclic contraction and expansion can be assessed as a monumental landmark of civil engineering technologies with respect to the massive budget reductions. However, since Integral Abutment Bridges are destined to expand or contract under the laws of nature, the bridge design became more complicated and sophisticated in order to complement the removal of expansion joints. That is why numerous researchers are attracted to Integral Abutment Bridges with deep interests. Accordingly, in designing the piled abutments of Integral bridges, it is essential to precisely predict the bridge's behavior in advance. Researchers have been broadly carried out during the last several decades on the behavior of piled bridge abutments. However, most of the studies have been analyzed with focus on structural elements or soils, respectively for the static and dynamic loads such as thermal variations and earthquake loads. This presented research developed 3D numerical models with 3 m, 4 m, 5 m, 6 m, 7 m, and 8 m-tall abutments in the bridge using the finite element analysis software MIDAS CIVIL that simulate the behaviors of Integral Abutment Bridges to study the soil-structure interaction mechanism. In addition, this work evaluated and validated the suitability to the limit of the abutment height in Ontario's recommendations for Integral Abutment Bridges by a parametric study under the combined static loading conditions. In order to be a balanced research in terms of a multidisciplinary study, this research analyzed key facts and issues related to soil-structure interaction mechanisms with both structural and geotechnical concerns. Moreover, the study established an explanatory diagram on soil-structure interaction mechanisms by cyclic thermal movements in Integral Abutment Bridges.

Book Long Term Behavior of Integral Abutment Bridges

Download or read book Long Term Behavior of Integral Abutment Bridges written by Robert J. Frosch and published by . This book was released on 2011 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral abutment bridges, a type of jointless bridge, are the construction option of choice when designing highway bridges in many parts of the country. Rather than providing an expansion joint to separate the substructure from the superstructure to account to volumetric strains, an integral abutment bridge is constructed so the superstructure and substructure are continuous. The abutment is supported by a single row of piles which must account for the longitudinal movement previously accommodated by the joints. The primary advantage of an integral abutment bridge is that it is jointless (expansion joints are eliminated) and thus reduces both upfront and overall life-cycle costs. In addition to other benefits provided by integral construction, the reduction in overall cost has led to INDOT requiring all new structures within certain geometric limitation be integral. These geometric limitations, traditionally based on engineering judgment, have been modified over time based as investigations have revealed more about the behavior of integral abutment bridges. While there has been a considerable amount of research and investigation conducted on the behavior of integral abutment bridges, information is limited on both long-term behavior and the effects of highly skewed structures. Because there is a great desire for the application of these structures to be expanded, this research serves to expand the understanding of the behavior of integral abutment structures. Additionally, updated geometric limitations are recommended along with design recommendations and recommended analysis procedures for properly modeling integral abutment behavior.

Book Seismic Analysis of Integral Abutment Bridges Considering Soil Structure Interaction

Download or read book Seismic Analysis of Integral Abutment Bridges Considering Soil Structure Interaction written by Reza Vasheghani Farahani and published by . This book was released on 2010 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral abutment bridges are jointless bridges in which the deck is continuous and connected monolithically with the abutment walls supported typically by a single row of piles. This thesis focuses on the effects of two major parameters on the seismic behavior of an integral abutment bridge in Tennessee by considering soil-structure interaction around the piles and in back of the abutments: (1) clay stiffness (medium vs. hard) around the piles, and (2) level of sand compaction (loose vs. dense) of the abutment wall backfilling. Modal and nonlinear time history analyses are performed on a three dimensional detailed bridge model using the commercial software SAP2000, which clearly show that (1) compacting the backfilling of the abutment wall will increase the bridge dominant longitudinal natural frequency considerably more than increasing the clay stiffness around the piles; (2) the maximum deflection and bending moment in the piles under seismic loading will happen at the pile-abutment interface; (3) under seismic loading, densely-compacted backfilling of the abutment wall is generally recommended since it will reduce the pile deflection, the abutment displacement, the moments in the steel girder, and particularly the pile moments; (4) under seismic loading, when the piles are located in firmer clay, although the pile deflection, the abutment displacement, and the maximum girder moment at the pier and the mid-span will decrease, the maximum pile moment and the maximum girder moment at the abutment will increase.