EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Effect of Electrochemical Promotion and Metal Support Interaction on Catalytic Performance of Nano catalysts

Download or read book Effect of Electrochemical Promotion and Metal Support Interaction on Catalytic Performance of Nano catalysts written by Yasmine Hajar and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In heterogeneous catalysis, promoting the activity of the catalytic metals is long known as an important method to make a process more efficient and viable. Noble metals have been promoted classically by a chemical coverage of an ionic solution on the surface of the catalyst or using inert support, e.g., silica or alumina, allowing an increase of the dispersion of the catalyst. Therefore, new methods of promotion needed to be better explored to improve the efficiency of metal and metal oxide catalysts. One way of enhancing the catalyst's activity is to disperse the noble metal at the nanoscale using an active type of support that is ion-conducting. Not only lattice ions can be exchanged with the surface of the nanoparticles but it can also engage in the oxidation reaction on the surface, resulting in what is known as metal-support interaction (MSI). Another method of improving the catalytic activity is to polarize the catalyst, allowing ions to migrate from a solid electrolyte to the gas-exposed surface, in a phenomenon known as electrochemical promotion of catalysis (EPOC). The change in the ions concentration on the surface would change the adsorption energy of the gaseous reactants and enhance or supress the catalytic rate. In this thesis, the effect of supporting nanoparticles of noble and non-noble metal (oxides) (Pt, Ru, Ir, Ni) was studied for the case of ionic and ionic-electronic conducting supports (CeO2, TiO2, YSZ). The enhancement in their catalytic rate was found and correlated to an electrochemical property, the exchange current density. Then, using isotopically-labeled oxygen, the oxygen exchange ability of the conductive oxides was evaluated when supporting Ir and Ru nanoparticles and correlated with the results from C3H8 isotopic oxidation reaction, which showed the extent of involvement of oxygen from the support as carried by the isotopically-labeled CO2 produced. Following this, electrochemical promotion of catalysis experiments were performed for different reactant/catalyst systems (C2H4 - Pt, Ru; C3H8 - Pt; CH4 - Pd, Ni9Pd). In the first system, the main outcome was the functional equivalence found for the MSI and EPOC effect in promoting the catalysts as experiments were performed at different temperatures, reactants partial pressures and polarization values. In the case of C3H8/Pt, the novel dispersion of Pt on an intermediate supporting layer (LSM/GDC) was found as a feasible method to obtain long stability of the catalyst while electrochemically promoting the rate of reaction. For CH4 oxidation, the polarization of the Pd nanoparticles showed continuous oxidation of the bulk of the catalyst resulting in a continuous increase of the catalytic rate. The Ni9Pd synthesized in a way to form a core/double-shell layer of Ni/Pd resulted in an enhanced catalytic rate and enhanced stability compared to stand-alone Pd. And lastly, to comprehend the ions' effect in the electrochemical promotion and the non-Faradaic nature of the phenomena, density-functional theory (DFT) modeling was used to demonstrate the increase of the heat of adsorption of reactants depending on their electronegative/positive nature.

Book Metal Support Interaction and Electrochemical Promotion of Nano Structured Catalysts for the Reverse Water Gas Shift Reaction

Download or read book Metal Support Interaction and Electrochemical Promotion of Nano Structured Catalysts for the Reverse Water Gas Shift Reaction written by Christopher Panaritis and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The continued release of fossil-fuel derived carbon dioxide (CO2) emissions into our atmosphere led humanity into a climate and ecological crisis. Converting CO2 into valuable chemicals and fuels will replace and diminish the need for fossil fuel-derived products. Through the use of a catalyst, CO2 can be transformed into a commodity chemical by the reverse water gas shift (RWGS) reaction, where CO2 reacts with renewable hydrogen (H2) to form carbon monoxide (CO). CO then acts as the source molecule in the Fischer-Tropsch (FT) synthesis to form a range of hydrocarbons to manufacture chemicals and fuels. While the FT synthesis is a mature process, the conversion of CO2 into CO has yet to be made commercially available due to the constraints associated with high reaction temperature and catalytic stability. Noble metal ruthenium (Ru) has been widely used for the RWGS reaction due to its high catalytic activity, however, several constraints hinder its practical use, associated with its high cost and its susceptibility to deactivation. The doping or bimetallic use of non-noble metals iron (Fe) and cobalt (Co) is an attractive option to lower material cost and tailor the selectivity of the CO2 conversion towards the RWGS reaction without compromising catalytic activity. Furthermore, employing nanostructured catalysts as nanoparticles is a viable solution to further lower the amount of metal used and utilize the highly active surface area of the catalyst. Dispersing nanoparticles on ionically conductive supports/solid electrolytes which contain species like O2−, H+, Na+, and K+, provide an approach to further enhance the reaction. This phenomenon is referred to as metal-support interaction (MSI), allowing for the ions to back spillover from the support and onto the catalyst surface. An in-situ approach referred to as Non-Faradaic Modification of catalytic activity (NEMCA), also known as electrochemical promotion of catalysis (EPOC) is used to in-situ control the movement of ionic species from the solid electrolyte to and away from the catalyst. Both the MSI and EPOC phenomena have been shown to be functionally equivalent, meaning the ionic species act to alter the work function of the catalyst by forming an effective neutral double layer on the surface, which in turn alters the binding energy of the reactant and intermediate species to promote the reaction. The main objective of this work is to develop a catalyst that is highly active and selective to the RWGS reaction at low temperatures (

Book Metal Nanoparticles for Catalysis

Download or read book Metal Nanoparticles for Catalysis written by Franklin Tao and published by Royal Society of Chemistry. This book was released on 2014-06-12 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.

Book Nanometal Catalysis in Organic Synthesis

Download or read book Nanometal Catalysis in Organic Synthesis written by Ming Bao and published by Springer Nature. This book was released on with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Supported Metals in Catalysis

Download or read book Supported Metals in Catalysis written by James Arthur Anderson and published by World Scientific. This book was released on 2012 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions from experts in supported metal catalysis, from both the industry and academia, this book presents the latest developments in characterization and application of supported metals in heterogeneous catalysis. In addition to a thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as Naphtha reforming, the book also includes emerging areas where supported metal catalysis will make significant contributions in future developments, such as fuel cells and fine chemicals synthesis. The second edition of Supported Metals in Catalysis comes complete with new and updated chapters containing important summaries of research in a rapidly evolving field. Very few other books deal with this highly pertinent subject matter, and as such, it is a must-have for anyone working in the field of heterogeneous catalysis.

Book Heterogeneous Nanocatalysis for Energy and Environmental Sustainability  Volume 1

Download or read book Heterogeneous Nanocatalysis for Energy and Environmental Sustainability Volume 1 written by Putla Sudarsanam and published by John Wiley & Sons. This book was released on 2023-01-04 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential companion for catalysis researchers and professionals studying economically viable and eco-friendly catalytic strategies for energy conversion In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications. Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts. It also offers: A thorough introduction to heterogeneous catalysis and nanocatalysis, as well as a discussion of catalytic active sites at nano-scale range Comprehensive explorations of the methods for control and activation of nanosized catalysts Practical discussions of C3N4-based nanohybrid catalysts for solar hydrogen production via water splitting Nanosized catalysts in visible light photocatalysis for sustainable organic synthesis Applications of MXenes in electrocatalysis Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.

Book Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions

Download or read book Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions written by Mei Yan and published by Springer Science & Business Media. This book was released on 2014-03-24 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, the focus is on the study of new catalytic properties of unsupported nanoporous metals in heterogeneous organic reactions under liquid-phase conditions. The author was the first to fabricate nanoporous copper with tunable nanoporosity and apply it for organic reactions. The catalyst can be reused up to ten times without loss of catalytic activity. In addition, the author developed the highly selective semihydrogenation of alkynes using nanoporous gold as a catalyst for the first time, affording Z-alkenes in 100% selectivity, which cannot be realized by traditional catalysts. All of the results described here will help readers to develop new catalytic performance of nanoporous metals for organic reactions.

Book Advanced Electrocatalysts for Low Temperature Fuel Cells

Download or read book Advanced Electrocatalysts for Low Temperature Fuel Cells written by Francisco Javier Rodríguez-Varela and published by Springer. This book was released on 2018-10-09 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.

Book Nanotechnology in Electrocatalysis for Energy

Download or read book Nanotechnology in Electrocatalysis for Energy written by Alessandro Lavacchi and published by Springer Science & Business Media. This book was released on 2014-01-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.

Book Nanotechnology in Catalysis Volumes 1 and 2

Download or read book Nanotechnology in Catalysis Volumes 1 and 2 written by Bing Zhou and published by Springer Science & Business Media. This book was released on 2003-12-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is mainly based on the first and second symposia on Nanotechnology in Catalysis held in 2001 and 2002, but it also includes several contributions not presented in the symposia to round out the scope of the subject. The contents are the most up to date developments made by researchers all over the world in the catalysis field in this fascinating nanotechnology era. It reflects some of the frontier areas of nanoscience and nanotechnology in fabricating and characterizing catalysts and carrying out studies to prove their superior selectivity and activity. The field of application of nanotechnology for the development of catalysts for green chemistry is likely to grow rapidly during the next decade. This book hopes to contribute to the evolution of nanotechnology in that direction.

Book Nanotechnology in Catalysis

Download or read book Nanotechnology in Catalysis written by Bert Sels and published by John Wiley & Sons. This book was released on 2017-06-20 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting the R&D efforts in the field that have resulted in a plethora of novel applications over the past decade, this handbook gives a comprehensive overview of the tangible benefits of nanotechnology in catalysis. By bridging fundamental research and industrial development, it provides a unique perspective on this scientifically and economically important field. While the first three parts are devoted to preparation and characterization of nanocatalysts, the final three provide in-depth insights into their applications in the fine chemicals industry, the energy industry, and for environmental protection, with expert authors reporting on real-life applications that are on the brink of commercialization. Timely reading for catalytic chemists, materials scientists, chemists in industry, and process engineers.

Book Recent Advances in Electrochemical Promotion of Catalysis

Download or read book Recent Advances in Electrochemical Promotion of Catalysis written by Philippe Vernoux and published by Springer Nature. This book was released on 2022-10-03 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume provides a critical review of research in the field of Electrochemical Promotion of Catalysis (EPOC). It presents recent developments during the past decade that have led to a better understanding of the field and towards applications of the EPOC concept. The chapters focus on the implementation of EPOC for developing sinter-resistant catalysts, catalysts for hydrogen production, ammonia production and carbon dioxide valorization. The book also highlights the developments towards electropromoted dispersed catalysts and for self-sustained electrochemical promotion which are currently expanding. This authoritative analysis of EPOC is useful for various scientific communities working at the interface of heterogeneous catalysis, solid state electrochemistry and materials science. It is of particular interest to groups whose research focuses on developments towards a better and more sustainable future.

Book Metal support and Metal additive Effects in Catalysis

Download or read book Metal support and Metal additive Effects in Catalysis written by B. Imelik and published by Elsevier Science & Technology. This book was released on 1982 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Support and Metal-Additive Effects in Catalysis, Volume 11, documents the proceedings of an international symposium organized by the Institut de Recherches sur la Catalyse - CNRS - Villeurbanne and sponsored by the Centre National de la Recherche Scientifique, Ecully (Lyon), September 14-16, 1982. This volume contains 40 manuscripts that cover a wide range of topics. Among these are studies of metal-support interactions involving Pt/Al2O3, Pt/TiO2,Fe/TiO2, Pt/MgO, Rh /Al2O3, and Pt/CeO2 catalysts. There are also separate chapters dealing with ethane, n-butane, and cyclohexane hydrogenolysis; skeletal isomerization of methylpentanes; the catalytic activity and selectivity of noble metals; CO hydrogenation over supported on SiO2, Al2O3, Ti O2,and Zr O2 nickel catalysts; and the role of promoters in Pd catalysts for methanol synthesis. Subsequent chapters cover the poisoning of platinum and nickel by sulfur; C6H6 and CO chemisorption on Pt78Ni22 (111) single crystal alloy; the surface composition of industrial ammonia synthesis catalysts; and the role of alkalis and electronegative promoters on Fe and Ni catalysts.

Book Strong Metal support Interactions

Download or read book Strong Metal support Interactions written by R. T. K. Baker and published by . This book was released on 1986 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigation and Rational Design of the Catalyst support Interface in Redox Catalysis by Ceria

Download or read book Investigation and Rational Design of the Catalyst support Interface in Redox Catalysis by Ceria written by Zhongqi Liu and published by . This book was released on 2020 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigating and controlling the catalyst-support interfacial interaction/structure and their effects on catalytic performance are crucial for optimizing the activity, selectivity, and durability of catalytic materials, as the heterogeneous catalytic reactions typically take place on the catalyst surface and/or at the interface between the catalyst and support. Ceria (CeO2), due to its remarkable redox activity, has been widely adopted as an active support material or promoter in a multitude of redox catalytic reactions and is the focus of this research. With the goal of bridging the predictable catalyst design-fundamental understanding of performance-practical application, we expect to develop uniform and well-defined CeO2 nanostructures as model supports to investigate the underlying mechanism of the catalyst-support interactions, and furthermore establish the correlation between interfacial structure and catalytically active sites. In Chapter 2, reducible CeO2 nanorods and nanocubes, as well as irreducible SiO2 nanospheres supported cobalt oxides (CoOx) catalysts were synthesized and comparatively studied to understand the effects of support morphology, surface defect, support reducibility, in addition to the CoOx-support interactions on their redox and catalytic properties. Chapter 3 focuses on exploring the role of “bimetallic catalysts-support interaction” over highly active CeO2 nanorods supported pure cobalt oxides and cobalt-based bimetallic oxides nanoparticles (Fe-Co, Ni-Co and Cu-Co). The interactions between cobalt with the second transition metals (Fe, Ni and Cu) are discussed as well. Nanoparticle agglomeration issue always exists when using wet-chemical methods to synthesize CeO2 nanomaterials, which is harmful for catalytic applications due to decreased surface area. Therefore, Chapter 4 presents a scalable and facile electrospinning process for designing novel fibrous structured CeO2 and one-pot synthesis of high-surface-area, thermally stable and low-temperature active Ru-CeO2 nanofiber catalysts. Besides, attracted by the great interest of three-dimensional (3D) nanoarray structures fabrication towards novel and high-performance catalyst design, as well as nanodevice applications, electrochemical deposition technique was adopted for fabricating CeO2 nanoarrays in Chapter 5. Processing factors on growing controllable CeO2 nanoarrays, including the current density, reaction temperature, stirring rate, anode and substrate types were comprehensively investigated. A scale-up synthetic strategy for CeO2 nanoarrays fabrication is developed. Besides, possible mechanisms for morphological evolution and growth of CeO2 nanoarrays are discussed.

Book Nano electrocatalyst for Oxygen Reduction Reaction

Download or read book Nano electrocatalyst for Oxygen Reduction Reaction written by Omar Solorza Feria and published by CRC Press. This book was released on 2024-06-21 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global warming switches our reliance from fossil fuels to green, sustainable renewable energy sources. Because of its promising nature, high-efficiency nano-electrocatalysts have sparked interest in renewable energy. Hydrogen fuel cell/polymer electrolyte membrane (PEM) vehicles are the most environmentally conscious electromobility vehicles, with a high energy density and quick refuelling technology, prompting the auto industry to launch a variety of PEM fuel cell vehicles around the world. Oxygen reduction reaction (ORR) primary research interests include fuel cells and metal-air batteries. The sluggish kinetic reaction of ORR, which is responsible for the rate-limiting reaction at the PEM fuel cell cathodic system, further decreases energy efficiency. Optimising ORR for market expansion with cost-effective and efficient nano-electrocatalysts, on the other hand, remains a challenge. The book covers fundamental ORR reaction kinetics theories, tools, and techniques. It also explains the nano electrocatalysts for ORR made of noble, non-noble, and nanocarbon materials. Finally, the book explores the applications of PEM fuel cells and metal-air batteries.