EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Earthquake Resilient Tall Reinforced Concrete Buildings at Near Fault Sites Using Base Isolation and Rocking Core Walls

Download or read book Earthquake Resilient Tall Reinforced Concrete Buildings at Near Fault Sites Using Base Isolation and Rocking Core Walls written by Vladimir Calugaru and published by . This book was released on 2013 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation pursues three main objectives: (1) to investigate the seismic response of tall reinforced concrete core wall buildings, designed following current building codes, subjected to pulse type near-fault ground motion, with special focus on the relation between the characteristics of the ground motion and the higher-modes of response; (2) to determine the characteristics of a base isolation system that results in nominally elastic response of the superstructure of a tall reinforced concrete core wall building at the maximum considered earthquake level of shaking; and (3) to demonstrate that the seismic performance, cost, and constructability of a base-isolated tall reinforced concrete core wall building can be significantly improved by incorporating a rocking core-wall in the design. First, this dissertation investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher-modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near-fault seismic ground motions as well as simple close-form pulses, which represented distinct pulses within the ground motions. Euler-Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. The response of the buildings to the close-form pulses fairly matched that of the near-fault records. Subsequently, a parametric study was conducted for the buildings subjected to three types of close-form pulses with a broad range of periods and amplitudes. The results of the parametric study demonstrate the importance of the ratio of the fundamental period of the structure to the period of the pulse to the excitation of higher modes. The study shows that if the modal response spectrum analysis approach is used--considering the first four modes with a uniform yield reduction factor for all modes and with the square root of sum of squares modal combination rule--it significantly underestimates bending moment and shear force responses. A response spectrum analysis method that uses different yield reduction factors for the first and the higher modes is presented. Next, this dissertation investigates numerically the seismic response of six seismically base-isolated (BI) 20-story reinforced concrete buildings and compares their response to that of a fixed-base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three-story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low-friction tension-resistant cross-linear bearings, lead-rubber bearings, and NFVDs. The designs of all buildings satisfy ASCE 7-10 requirements, except that one component of horizontal excitation is used in the two-dimensional nonlinear response history analysis. Analysis is performed for a set of ground motions scaled to the design earthquake (DE) and to the maximum considered earthquake (MCE). At both the DE and the MCE, the FB building develops large inelastic deformations and shear forces in the wall and large floor accelerations. At the MCE, four of the BI buildings experience nominally elastic response of the wall, with floor accelerations and shear forces being 0.25 to 0.55 times those experienced by the FB building. The response of the FB and four of the BI buildings to four unscaled historical pulse-like near-fault ground motions is also studied. Finally, this dissertation investigates the seismic response of four 20-story buildings hypothetically located in the San Francisco Bay Area, 0.5 km from the San Andreas fault. One of the four studied buildings is fixed-base (FB), two are base-isolated (BI), and one uses a combination of base isolation and a rocking core wall (BIRW). Above the ground level, a reinforced concrete core wall provides the majority of the lateral force resistance in all four buildings. The FB and BI buildings satisfy requirements of ASCE 7-10. The BI and BIRW buildings use the same isolation system, which combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers. The rocking core-wall includes post-tensioning steel, buckling-restrained devices, and at its base is encased in a steel shell to maximize confinement of the concrete core. The total amount of longitudinal steel in the wall of the BIRW building is 0.71 to 0.87 times that used in the BI buildings. Response history two-dimensional analysis is performed, including the vertical components of excitation, for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). While the FB building at MCE level of shaking develops inelastic deformations and shear stresses in the wall that may correspond to irreparable damage, the BI and the BIRW buildings experience nominally elastic response of the wall, with floor accelerations and shear forces which are 0.36 to 0.55 times those experienced by the FB building. The response of the four buildings to two historical and two simulated near-fault ground motions is also studied, demonstrating that the BIRW building has the largest deformation capacity at the onset of structural damage.

Book Earthquake Resistant and Resilient Tall Reinforced Concrete Buildings Using Base Isolation and Rocking Core walls

Download or read book Earthquake Resistant and Resilient Tall Reinforced Concrete Buildings Using Base Isolation and Rocking Core walls written by Vladimir Calugaru and published by . This book was released on 2011 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Innovative Methodologies for Resilient Buildings and Cities

Download or read book Innovative Methodologies for Resilient Buildings and Cities written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2019-09-19 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resilient buildings and cities are in the center of common interests in modern academic communities for science and engineering related to built environment. Resilience of buildings and cities against multidisciplinary risks, e.g. earthquakes, strong winds, floods, etc., is strongly related to the sustainability of buildings and cities in which reduction of damage during a disaster and fast recovery from the damage are key issues. The reduction of damage is related to the level of resistance of buildings and the time of recovery is affected by the amount of supply of damaged members, assurance of restoration work, etc. Robustness, redundancy, resourcefulness, and rapidity are four key factors for supporting the full realization of design and construction of resilient buildings and cities. This research topic gathers cutting-edge and innovative research from various aspects, e.g. robustness of buildings and cities against earthquake risk, structural control and base-isolation for controlling damage risks, quantification of resilience measures, structural health monitoring, innovative structural engineering techniques for higher safety of buildings, resilience actions and tools at the urban scale, etc.

Book Improving the Earthquake Resilience of Buildings

Download or read book Improving the Earthquake Resilience of Buildings written by Izuru Takewaki and published by Springer Science & Business Media. This book was released on 2012-07-26 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics including: A consideration of damage of building structures in the critical excitation method for improved building-earthquake resilience, A consideration of uncertainties of structural parameters in structural control and base-isolation for improved building-earthquake resilience, and New insights in structural design of super high-rise buildings under long-period ground motions. Improving the Earthquake Resilience of Buildings: The worst case approach is a valuable resource for researchers and engineers interested in learning and applying the worst-case scenario approach in the seismic-resistant design for more resilient structures.

Book Seismic Performance of High rise Reinforced Concrete Buildings on Soft Soils

Download or read book Seismic Performance of High rise Reinforced Concrete Buildings on Soft Soils written by Hatem Youssef Goucha and published by . This book was released on 1992 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Resistant Concrete Structures

Download or read book Earthquake Resistant Concrete Structures written by Andreas Kappos and published by CRC Press. This book was released on 2014-04-21 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces practising engineers and post-graduate students to modern approaches to seismic design, with a particular focus on reinforced concrete structures, earthquake resistant design of new buildings and assessment, repair and strengthening of existing buildings.

Book Earthquake Resistant Structures

Download or read book Earthquake Resistant Structures written by Abbas Moustafa and published by BoD – Books on Demand. This book was released on 2012-02-29 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with earthquake-resistant structures, such as, buildings, bridges and liquid storage tanks. It contains twenty chapters covering several interesting research topics written by researchers and experts in the field of earthquake engineering. The book covers seismic-resistance design of masonry and reinforced concrete structures to be constructed as well as safety assessment, strengthening and rehabilitation of existing structures against earthquake loads. It also includes three chapters on electromagnetic sensing techniques for health assessment of structures, post earthquake assessment of steel buildings in fire environment and response of underground pipes to blast loads. The book provides the state-of-the-art on recent progress in earthquake-resistant structures. It should be useful to graduate students, researchers and practicing structural engineers.

Book Evaluation of Building Resilience under Earthquake Input Using Single  Double and Multiple Impulses

Download or read book Evaluation of Building Resilience under Earthquake Input Using Single Double and Multiple Impulses written by Izuru Takewaki and published by Frontiers Media SA. This book was released on 2017-09-07 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is the third in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes four original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first eBook and the second eBook are included here. The first article is on the earthquake resilience of residential houses after repeated ground motions with high intensity. The 2016 Kumamoto earthquake brought a significant impact on the earthquake resilience of residential houses under repeated ground motions with high intensity in a few days. The necessary strength upgrade withstanding two repeated high-intensity ground motions was found to be 1.5. The second article is concerned with the smart enhancement of earthquake resilience of building structures under both near-fault and long-duration ground motions. A hybrid system of base-isolation and building connection control was proposed and its earthquake resilience to near-fault and long-duration ground motions was evaluated by a double impulse and a multiple impulse. It was demonstrated that the base-isolation is effective for near-fault ground motions and the building connection system using passive dampers is effective for long-duration ground motions. The third article is related to the robustness evaluation of elastic-plastic base-isolated high-rise buildings under resonant near-fault ground motions. The robustness function was introduced to evaluate quantitatively the robustness of elastic-plastic base-isolated high-rise buildings. The fourth article is an extension of the previously proposed energy balance approach to a bilinear elastic-plastic single-degree-of-freedom system under a long-duration sinusoidal ground motion. A historical difficulty in nonlinear vibration posed by Caughey (1960) and Iwan (1961) has been overcome in a smart manner after half a century. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.

Book Earthquake Resistant Buildings

Download or read book Earthquake Resistant Buildings written by M.Y.H. Bangash and published by Springer Science & Business Media. This book was released on 2011-08-19 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise work provides a general introduction to the design of buildings which must be resistant to the effect of earthquakes. A major part of this design involves the building structure which has a primary role in preventing serious damage or structural collapse. Much of the material presented in this book examines building structures. Due to the recent discovery of vertical components, it examines not only the resistance to lateral forces but also analyses the disastrous influence of vertical components. The work is written for Practicing Civil, Structural, and Mechanical Engineers, Seismologists and Geoscientists. It serves as a knowledge source for graduate students and their instructors.

Book Design of Reinforced Concrete Buildings for Seismic Performance

Download or read book Design of Reinforced Concrete Buildings for Seismic Performance written by Mark Aschheim and published by CRC Press. This book was released on 2019-04-05 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.

Book Fundamentals of Earthquake Resistant Construction

Download or read book Fundamentals of Earthquake Resistant Construction written by Ellis L. Krinitzsky and published by John Wiley & Sons. This book was released on 1993-01-12 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for engineers without a background in seismic design. Provides design standards and parameters, explaining how to interpret and apply them. Examines and recommends procedures to accommodate the enormous forces and variations in effects common to major earthquakes. Covers practical aspects of soil behavior and structural and foundation design. Gives tips on special construction situations: foundations, dams and retaining walls, strengthening existing structures and construction over active faults.

Book Concrete Buildings in Seismic Regions  Second Edition

Download or read book Concrete Buildings in Seismic Regions Second Edition written by George G. Penelis and published by CRC Press. This book was released on 2018-10-04 with total page 966 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforced concrete (R/C) is one of the main building materials used worldwide, and an understanding of its structural performance under gravity and seismic loads, albeit complex, is crucial for the design of cost effective and safe buildings.Concrete Buildings in Seismic Regions comprehensively covers of all the analysis and design issues related

Book Concrete Structures in Earthquake Regions

Download or read book Concrete Structures in Earthquake Regions written by Edmund D. Booth and published by Longman Scientific and Technical. This book was released on 1994 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an essential reference for practicing civil and structural engineers and architects involved with projects in earthquake regions. Undergraduate and advanced students of earthquake engineering will welcome the comprehensive and approachable coverage.

Book Concrete Buildings in Seismic Regions

Download or read book Concrete Buildings in Seismic Regions written by George G. Penelis and published by CRC Press. This book was released on 2014-03-24 with total page 878 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bearing in mind that reinforced concrete is a key component in a majority of built environment structures, Concrete Buildings in Seismic Regions combines the scientific knowledge of earthquake engineering with a focus on the design of reinforced concrete buildings in seismic regions. This book addresses practical design issues, providing an integrated, comprehensible, and clear presentation that is suitable for design practice. It combines current approaches to seismic analysis and design, with a particular focus on reinforced concrete structures, and includes: an overview of structural dynamics analysis and design of new R/C buildings in seismic regions post-earthquake damage evaluation, pre earthquake assessment of buildings and retrofitting procedures seismic risk management of R/C buildings within urban nuclei extended numerical example applications Concrete Buildings in Seismic Regions determines guidelines for the proper structural system for many types of buildings, explores recent developments, and covers the last two decades of analysis, design, and earthquake engineering. Divided into three parts, the book specifically addresses seismic demand issues and the basic issues of structural dynamics, considers the "capacity" of structural systems to withstand seismic effects in terms of strength and deformation, and highlights existing R/C buildings under seismic action. All of the book material has been adjusted to fit a modern seismic code and offers in-depth knowledge of the background upon which the code rules are based. It complies with the last edition of European Codes of Practice for R/C buildings in seismic regions, and includes references to the American Standards in effect for seismic design.

Book Seismic Performance of Concrete Buildings

Download or read book Seismic Performance of Concrete Buildings written by Liviu Crainic and published by CRC Press. This book was released on 2012-12-10 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines and presents essential aspects of the behavior, analysis, design and detailing of reinforced concrete buildings subjected to strong seismic activity. Seismic design is an extremely complex problem that has seen spectacular development in the last decades. The present volume tries to show how the principles and methods of earthqua

Book Seismic Isolation Strategies for Earthquake Resistant Construction

Download or read book Seismic Isolation Strategies for Earthquake Resistant Construction written by Mikayel Melkumyan and published by Cambridge Scholars Publishing. This book was released on 2018-10-15 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquakes are catastrophic events that cause huge economic losses due to the vulnerability of the existing building stock. However, collapses of vulnerable buildings can be avoided if preventative measures, such as enhancement of their earthquake resistance, are implemented on time. This book will allow the reader to become acquainted with a number of unique, modern and cost-effective seismic isolation strategies, which can be easily, and in very short periods of time, and without interruption of the use of the buildings, implemented with high efficiency in existing buildings, making them earthquake proof. An important aspect here is that the book’s seismic isolation strategies are demonstrated on real examples of existing buildings with different structural systems, such as reinforced concrete frame buildings with shear walls and stone buildings with load-bearing walls. The cost-effectiveness of the suggested strategies is further proved by comparative analyses carried out for buildings both with and without seismic isolation systems.

Book Techniques for the Seismic Rehabilitation of Existing Buildings

Download or read book Techniques for the Seismic Rehabilitation of Existing Buildings written by and published by FEMA. This book was released on 2006 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: