EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamics of Ultrasonic Motors

Download or read book Dynamics of Ultrasonic Motors written by Thomas Sattel and published by . This book was released on 2003 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultrasonic Motors

Download or read book Ultrasonic Motors written by Chunsheng Zhao and published by Springer Science & Business Media. This book was released on 2011-10-23 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive tutorial on ultrasonic motors for practicing engineers, researchers and graduate students. "Ultrasonic Motors: Technologies and Applications" describes the operating mechanism, electromechanical coupling models, optimization design of structural parameters, testing methods, and drive/control techniques of various ultrasonic motors and their applications. Dr. Chunsheng Zhao is a professor at Nanjing University of Aeronautics and Astronautics (NUAA) where he is Director of the Precision Driving Laboratory at NUAA. He is a member of the Chinese Academy of Science, and holds 54 patents in China and published more than 400 papers in the field of piezoelectric ultrasonic motors.

Book The Dynamics of Combined Axial torsional Standing wave Ultrasonic Motors

Download or read book The Dynamics of Combined Axial torsional Standing wave Ultrasonic Motors written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Piezoelectric ultrasonic motors have the potential to enable important applications such as endovasular surgical micro-robots due to their high torque and power density at the 0.1-1 mm diameter range. A type of ultrasonic motor that is suitable for miniaturization is the combined axial-torsional standing-wave (CATS) ultrasonic motor that generates the CATS stator motion via pretwisted beam vibration converters. The operation of the motor involves (1) the generation of an ellipse-like stator tip trajectory when the pretwisted-beam stator is excited to vibrate in a CATS motion by a piezoelectric transducer, and (2) the transfer of frictional torque when the rotor is pressed against the stator tip. To gain a better understanding of the CATS ultrasonic motor, centimeter-scale prototypes were fabricated and tested to determine the characteristics of the motor design. Theoretical models of the pretwisted beam stator and the torque transfer mechanism were also investigated to help us predict the effects of various design parameters. The axial and torsional resonance frequencies of the pretwisted-beam stator needs to be matched for an effcient generation of the CATS stator motion. To help designers select the right analysis method for the design process, we investigated the validity of common pretwisted beam theories that assume the warping function of a pretwisted beam is locally identical to that of a prismatic beam. Through a scaling analysis of the equations governing the warping function of pretwisted beams -- derived using semi-inverse method and Hamilton's principle -- we obtained a set of criteria for checking the validity of the assumption. These criteria allow us to determine at what geometries the use of prismatic warping function will result in poor predictions of the axial resonance frequency and that alternative modelling methods are needed. Existing models of CATS motors ignore the vertical displacement of the rotor, predicting periodic behaviours that are co.

Book The Dynamics of Combined Axial torsional Standing wave Ultrasonic Motors

Download or read book The Dynamics of Combined Axial torsional Standing wave Ultrasonic Motors written by Daniel Kuang-Chen Liu and published by . This book was released on 2009 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Piezoelectric ultrasonic motors have the potential to enable important applications such as endovasular surgical micro-robots due to their high torque and power density at the 0.1-1 mm diameter range. A type of ultrasonic motor that is suitable for miniaturization is the combined axial-torsional standing-wave (CATS) ultrasonic motor that generates the CATS stator motionvia pretwisted beam vibration converters.The operation of the motor involves (1) the generation of an ellipse-like stator tip trajectory when the pretwisted-beam stator is excited to vibrate in a CATS motion by a piezoelectric transducer, and (2) the transfer of frictional torque when the rotor is pressed against the stator tip. To gain a better understanding of the CATS ultrasonic motor, centimeter-scale prototypes were fabricated and tested to determine the characteristics of the motor design. Theoretical models of the pretwisted beam stator and the torque transfer mechanism were also investigated to help us predict the effects of various design parameters.The axial and torsional resonance frequencies of the pretwisted-beam stator needs to be matched for an effcient generation of the CATS stator motion. To help designers select the right analysis method for the design process, we investigated the validity of common pretwisted beam theories that assume the warping function of a pretwisted beam is locally identical to that of a prismatic beam. Through a scaling analysis of the equations governing the warping function of pretwisted beams -- derived using semi-inverse method and Hamilton's principle -- we obtained a set of criteria for checking the validity of the assumption. These criteria allow us to determine at what geometries the use of prismatic warping function will result in poor predictions of the axial resonance frequency and that alternative modelling methods are needed.Existing models of CATS motors ignore the vertical displacement of the rotor, predicting periodic behaviours that are contrary to the apparently random oscillations observed in the motor's steady-state operation. Our incorporation of the rotor's vertical motion results in a bouncing-disk model that explains various behaviours of the motor prototype, including the oscillations in the transient speed-time curve, and the effect of preload on stall torque and steady-state speed. The nonlinear dynamical system formed by the bouncing disk model shows that different stator trajectories and interface properties can give rise to complex phenomena such as period doubling bifurcation, chaos, and extremely long period "chattering orbits". Knowledge of the location and basins of attraction for these orbits gives us detailed understanding of the motor's behaviour that will help designers improve the performance of CATS ultrasonic motor.

Book Piezoelectric Actuators and Ultrasonic Motors

Download or read book Piezoelectric Actuators and Ultrasonic Motors written by Kenji Uchino and published by Springer Science & Business Media. This book was released on 1996-11-30 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Remarkable developments have taken place in the field of mechatronics in recent years. As symbolized by the "Janglish (Japanese English)" word, mechatronics, the technology and the social adaptation for introducing electronics into mechanics has been readily accepted in Japan. Currently robots are producing many products under computer control in Japanese factories, and supermarkets are utilizing automation systems for sample displays and sales. Further, the fast paced change in semiconductor chip technology has given rise to the need for micro-displacement positioning techniques. Actuators utilizing piezoelectridelectrostrictive effects are expected to meet these needs in mechanical components in the next micro mechatronic age. This book, in English, builds on my earlier publications concerned with ceramic actuators. The first edition titled "Essentials for Development and Applications of Piezoelectric Actuators" was published in 1984 through the Japan Industrial Technology Center. The second edition "PiezoelectriclElectrostrictive Actuators" published in Japanese through Morikita Pub. Co. (Tokyo) became one of the best sellers in that company in 1986, and was then translated into Korean. The problem solving edition "Piezoelectric Actuators -Problem Solving" was also published through Morikita, which was sold in conjunction with a 60 minute video tape to provide easy understanding.

Book Ultrasonic Processes and Machines

Download or read book Ultrasonic Processes and Machines written by V.K. Astashev and published by Springer Science & Business Media. This book was released on 2007-11-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is the first and only book on the fundamentals of ultrasonic machining. It presents the foundations of dynamic and control for ultrasonic processing systems and considers ultrasonic systems as special vibratory machines that function by exploiting nonlinear dynamic processes. Recommendations are given for designing and tuning ultrasonic machines. The ultrasonic machines analyzed are predominantly concerned with the processing of solids.

Book An Introduction to Ultrasonic Motors

Download or read book An Introduction to Ultrasonic Motors written by Toshiiku Sashida and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account of ultrasonic motors - a new type of electric motor which employs the piezo-electric effect to give the motive power (rather than electromagnetic interactions in conventional motors). One of the authors, Sashido, is the inventor of the ultrasonic motor.

Book Piezoelectric Energy Harvesting

Download or read book Piezoelectric Energy Harvesting written by Alper Erturk and published by John Wiley & Sons. This book was released on 2011-04-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Book An Introduction to Ultrasonic Motors

Download or read book An Introduction to Ultrasonic Motors written by Toshiiku Sashida and published by Monographs in Electrical and E. This book was released on 1993 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide its motive force, resulting in a motor with unusually good low-speed, high-torque and power-to-weight characteristics. This introduction to the general theory of the ultrasonic motor was written by the motor's inventor and an expert in conventional electric motors. It details many of the motor's applications, including those in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Electrical and electronic research engineers as well as students will find this an invaluable introduction to this important new invention.

Book Ultrasonic Motors

    Book Details:
  • Author : S. Ueha
  • Publisher : Oxford University Press, USA
  • Release : 1993
  • ISBN :
  • Pages : 320 pages

Download or read book Ultrasonic Motors written by S. Ueha and published by Oxford University Press, USA. This book was released on 1993 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a completely up-to-date survey of the many different types of ultrasonic motors currently in use. These motors, which use ultrasonic vibrations to produce a frictional driving force, have many attractive features, including simple structures which can easily be miniaturized, large power to weight ratios, high torque at low speed, high precision due to low inertia and easy electronic control, and no associated magnetic field. With such advantages, they are increasingly displacing conventional electromagnetic motors in robot actuators, camera autofocus mechanisms, and aerospace devices, to name a few examples. Written by leading experts on the subject, the book introduces the reader to the design and manufacture of the motor as well as to techniques for evaluating motor performance. It will be an invaluable guide to electrical engineering researchers, designers, and manufacturers.

Book Design of a Linear High Precision Ultrasonic Piezoelectric Motor

Download or read book Design of a Linear High Precision Ultrasonic Piezoelectric Motor written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To understand the operating principles of linear ultrasonic piezoelectric motors, a motor made by Nanomotion Ltd. was examined and a model of the driving process was developed. A new motor has been designed that uses the same driving process but improves resolution, speed, efficiency and especially controllability. All designs involve at least two independently driven piezoelectric elements, one generating the normal load at the interface and the second generating the tangential driving force. The greatest challenges in developing this motor are 1) the actuator needs to have two different mode shapes at nearly the same frequency and 2) each mode shape must be exclusively excited by one actuator and not by the other. The quality of the operation of the motor directly depends on how well the excitation of both vibrations can be separated. Finite element analysis (FEA) has been used to model the actuator and predict the dynamic properties of a future prototype. The model includes all significant features that have to be considered such as the anisotropy of the piezoelectric material, the exact properties and the dimensions of the actuators (including all joints). Several prototypes have been built, and the resulting mode shapes and natural frequencies have been measured and compared to the computer models. The design concepts as well as the modeling techniques have been iteratively improved. Open loop testing has shown that the motor generates slideway motion such that the steady state slideway velocity is proportional to the excitation voltage. To fully characterize the motor and to demonstrate its full potential for positioning tasks, the motor has been tested in a closed loop control system. Despite saturation of the control input and nonlinearities in dynamics of the motor-slideway system, it was shown that a simple feedback control system using proportional gain or proportional-integrating control algorithms can be used to achieve a stable responsive positioning sy.

Book Piezoelectric Actuators

    Book Details:
  • Author : Hu Huang
  • Publisher : BoD – Books on Demand
  • Release : 2021-12-08
  • ISBN : 1839688319
  • Pages : 186 pages

Download or read book Piezoelectric Actuators written by Hu Huang and published by BoD – Books on Demand. This book was released on 2021-12-08 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking advantage of high resolution, rapid response, and compact structure, piezoelectric actuators are widely employed for achieving precision positioning in both scientific research and industrial application. With the development of science and technology, the requirements for precision positioning are increasing. Accordingly, great efforts have been made to improve the performances of piezoelectric actuators, and significant progress has been achieved. This book discusses some recent achievements and developments of piezoelectric actuators, in terms of piezoelectric material, driving principle, structural design, modeling, and control, as well as applications.

Book Power Ultrasonics

Download or read book Power Ultrasonics written by Juan A. Gallego-Juarez and published by Elsevier. This book was released on 2014-11-14 with total page 1167 pages. Available in PDF, EPUB and Kindle. Book excerpt: The industrial interest in ultrasonic processing has revived during recent years because ultrasonic technology may represent a flexible “green alternative for more energy efficient processes. A challenge in the application of high-intensity ultrasound to industrial processing is the design and development of specific power ultrasonic systems for large scale operation. In the area of ultrasonic processing in fluid and multiphase media the development of a new family of power generators with extensive radiating surfaces has significantly contributed to the implementation at industrial scale of several applications in sectors such as the food industry, environment, and manufacturing. Part one covers fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. It also discusses the materials and designs of power ultrasonic transducers and devices. Part two looks at applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology. Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. Discusses the materials and designs of power ultrasonic transducers and devices. Considers state-of-the-art power sonic applications across a wide range of industries.

Book Modeling of an Ultrasonic Rotary Motor

Download or read book Modeling of an Ultrasonic Rotary Motor written by Carlos Cuauht Cuevas Gutierrez and published by VDM Publishing. This book was released on 2008 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrasonic motors are a new type of actuators that use mechanical vibrations of its stator to drive the rotor through frictional forces between the interface of the stator and rotor. Ultrasonic motors have recently been attracting considerable attention in industrial applications where high precision, fast response and high torque at low speed are desirable. In contrast to traditional electromagnetic motors, ultrasonic motors provide larger torque to volume ratio, silent operation, and compact design. Furthermore, its operation is not affected by electromagnetic fields, and the motor shaft remains braked when the power supply is removed. The commercial development of ultrasonic motors, however, has been limited primarily due to lack of complete models for the purpose of control. Consequently, the development of an accurate model based on the physical structure is extremely vital for controllers development. The present dissertation proposes a comprehensive model for the purpose of predicting the motor performance. A lumped-mass model of the stator is proposed to consider the coupling effects on the stator based on the flexibility influence coefficients, which are estimated from a finite element method. Moreover, the stator natural frequencies are obtained using modal analysis. Nonlinear tangential interface forces between the rotor and stator are incorporated into the driving torque function. A rotor model based on the Stribeck effect, Coulomb and viscous friction is also incorporated to describe the friction torque associated with the motor response. An extensive series of experiments have been designed together with a state-of-the-art test bench built at the laboratory of Concordia University. The validity of the proposed model was examined by comparing the model results with the measured data under different excitation conditions. The lumped-mass model is able to reproduce reasonably well the stator displacements and the excited modes when it is driven at different frequencies as a result of the stiffness coupling. Several rotor model parameters are identified by using the experimental data and a weighted error minimization function. From the results obtained in the present study, it is concluded that the proposed USM model can reproduce reasonably well the motor behavior to different excitations inputs such as step, ramp and harmonic excitations as well as the torque-speed characteristics. It is important to note that the developed model shows torque-speed hysteresis behavior, which has not been reported in literature. To experimentally confirm this new phenomenon, extensive experimental tests have been conducted to identify the torque-speed characteristics on the ultrasonic motor. It has been observed from experiments a clear torque-speed hysteresis in the ultrasonic motor attributed mainly to the friction drive principle at the contact interface. This behavior, however, has not been addressed previously. It is suggested that the lack of an appropriate instrumentation together with inadequate models have made very difficult to describe this phenomenon. On the other hand, the torque-speed hysteresis exhibits a high asymmetric behavior at low speed as a result of the friction torque produced by the Stribeck effect.

Book Dynamic Contact Analysis of a Piezoelectrically Driven Ultrasonic Crawler actuator

Download or read book Dynamic Contact Analysis of a Piezoelectrically Driven Ultrasonic Crawler actuator written by Dwight Santiago Maness and published by . This book was released on 2013 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A standing wave ultrasonic motor (SWUM) is presented in this thesis. The actuator is piezoelectrically powered and operates in the first and second bending modes to move forwards and backwards, respectively. The kinematic stability of the crawler, backed by experimental results is shown in the first paper presented in this thesis. This study demonstrates that in the absence of a preload or kinematic constraints, the crawler shows vertical stability. A full transient analysis using the finite element method is performed characterizing the speed and contact variables is conducted in the second paper. The results show that given enough time the crawler is inherently stable and will reach a steady state velocity"--Abstract, page iv.

Book Handbook of Ultrasonic Vocalization

Download or read book Handbook of Ultrasonic Vocalization written by Stefan M Brudzynski and published by Academic Press. This book was released on 2018-04-27 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Ultrasonic Vocalization: Window into the Mammalian Brain, Volume 25, is an exhaustive resource on ultrasonic vocalizations in vertebrates, providing full coverage of all aspects of these vocalizations. The book also demonstrates the usefulness of ultrasonic vocalizations in studies of animal communication, sociobiological states, and in mammalian models of affective disorders, addictions and neurodevelopmental disorders, making it an indispensable resource for researchers using animal models. The book begins with the evolution of vocal communication before discussing mechanisms of ultrasound production, perception and the brain systems involved in emotional arousal that are responsible for the generation of vocalization and emotional states. In addition, the book covers studies of neuroactive agents and sociopsychological conditions that can regulate the outcome of ultrasonic vocalization and provide clues about animals’ internal states. Critically, the book also includes thorough coverage of pharmacological investigations using ultrasonic vocalizations, increasingly being utilized for studies in affective disorders, psychoses, addiction and alcoholism. No other book provides such extensive coverage of this rapidly growing field of study. Represents a multidisciplinary approach that incorporates evolution, communication, behavioral homeostasis, emotional expression and neuropsychiatric dysfunction Provides a systematic review of ultrasonic vocalizations in major groups of rodents widely used in laboratory research Discusses numerous other species across vertebrates that emit ultrasounds