EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Integrated Reservoir Studies for CO2 Enhanced Oil Recovery and Sequestration

Download or read book Integrated Reservoir Studies for CO2 Enhanced Oil Recovery and Sequestration written by Shib Sankar Ganguli and published by Springer. This book was released on 2017-03-30 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the feasibility of CO2-EOR and sequestration in a mature Indian oil field, pursuing for the first time a cross-disciplinary approach that combines the results from reservoir modeling and flow simulation, rock physics modeling, geomechanics, and time-lapse (4D) seismic monitoring study. The key findings presented indicate that the field under study holds great potential for enhanced oil recovery (EOR) and subsequent CO2 storage. Experts around the globe argue that storing CO2 by means of enhanced oil recovery (EOR) could support climate change mitigation by reducing the amount of CO2 emissions in the atmosphere by ca. 20%. CO2-EOR and sequestration is a cutting-edge and emerging field of research in India, and there is an urgent need to assess Indian hydrocarbon reservoirs for the feasibility of CO2-EOR and storage. Combining the fundamentals of the technique with concrete examples, the book is essential reading for all researchers, students and oil & gas professionals who want to fully understand CO2-EOR and its geologic sequestration process in mature oil fields.

Book Innovations in Enhanced and Improved Oil Recovery   New Advances

Download or read book Innovations in Enhanced and Improved Oil Recovery New Advances written by Mansoor Zoveidavianpoor and published by BoD – Books on Demand. This book was released on 2024-04-24 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book navigates the evolving landscape of Enhanced Oil Recovery (EOR) and Improved Oil Recovery (IOR), covering diverse topics such as lithological dynamics in CO2-EOR, the impact of asphaltene precipitation in WAG implementation, progress in CO2-EOR and storage technology, in situ foam generation for unconventional fractured reservoirs, electromagnetic radiation effects on heavy oil upgrading, advancements in hydraulic fracturing, in situ synthesis of nanoparticles, and operational insights in the Bakken Shale. This comprehensive volume serves as an indispensable resource for professionals and researchers in the ever-changing field of enhanced and improved oil recovery.

Book CO2 Injection in Fractured Porous Media for Enhanced Oil Recovery and Storage

Download or read book CO2 Injection in Fractured Porous Media for Enhanced Oil Recovery and Storage written by Farshid Torabi and published by . This book was released on 2008 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: For huff-and-puff and gravity drainage experiments, effects of matrix permeability, initial water saturation, oil viscosity, and operating pressure were investigated during both miscible and immiscible CO2 injection.

Book Selected Topics on Improved Oil Recovery

Download or read book Selected Topics on Improved Oil Recovery written by Berihun Mamo Negash and published by Springer. This book was released on 2018-03-15 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents articles from the International Conference on Improved Oil Recovery, CIOR 2017, held in Bandung, Indonesia. Highlighting novel technologies in the area of Improved Oil Recovery, it discusses a range of topics, including enhanced oil recovery, hydraulic fracturing, production optimization, petrophysics and formation evaluation.

Book Enhanced Oil Recovery Field Case Studies

Download or read book Enhanced Oil Recovery Field Case Studies written by S. Lee and published by Elsevier Inc. Chapters. This book was released on 2013-04-10 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the enhanced oil recovery (EOR) survey in Oil and Gas Journal (2010), approximately 280,000bbl of oil per day or 6% of US crude oil production was produced by carbon dioxide (CO2) EOR. Just like any other gas injection processes, field CO2 flooding projects suffer from poor sweep efficiency due to early gas breakthrough, unfavorable mobility ratio, reservoir heterogeneity, viscous fingering and channeling, and gravity segregation. Many of these problems are believed to be alleviated or overcome by foaming the injected CO2. Since the 1970s, CO2-foam flooding has been used as a commercially viable method for EOR processes. Foams, defined as a mixture of internal gas phase in a continuous external liquid phase containing surfactant molecules, can improve sweep efficiency significantly by reducing gas mobility, especially in the reservoirs with a high level of geological heterogeneity. This chapter consists of three main parts: the first part (Section 2.1) deals with fundamentals on foams in porous media and recent advances in this field of research, including three foam states (weak-foam, strong-foam, and intermediate states) and two steady-state flow regimes of strong foams; the second part (Section 2.2) overviews field examples of foam-assisted CO2-EOR processes; and the third part (Section 2.3) covers typical field injection and production responses if CO2-foam pilot or field-scale treatments are successful.

Book Impact of Carbon Dioxide Sequestration on Reservoir Brine Composition at an Enhanced Oil Recovery Site in Fayette County  Illinois

Download or read book Impact of Carbon Dioxide Sequestration on Reservoir Brine Composition at an Enhanced Oil Recovery Site in Fayette County Illinois written by and published by . This book was released on 2010 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CO2 Injection in the Network of Carbonate Fractures

Download or read book CO2 Injection in the Network of Carbonate Fractures written by J. Carlos de Dios and published by Springer Nature. This book was released on 2020-12-17 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents guidelines for the design, operation and monitoring of CO2 injection in fractured carbonates, with low permeability in the rock matrix, for geological storage in permanent trapping. CO2 migration is dominated by fractures in formations where the hydrodynamic and geochemical effects induced by the injection play a key role influencing the reservoir behavior. CO2 injection in these rocks shows specific characteristics that are different to injection in porous media, as the results from several research studies worldwide reveal. All aspects of a project of this type are discussed in this text, from the drilling to the injection, as well as support works like well logging, laboratory and field tests, modeling, and risk assessment. Examples are provided, lesson learned is detailed, and conclusions are drawn. This work is derived from the experience of international research teams and particularly from that gained during the design, construction and operation of Hontomín Technology Development Plant. Hontomín research pilot is currently the only active onshore injection site in the European Union, operated by Fundación Ciudad de la Energía-CIUDEN F.S.P. and recognized by the European Parliament as a key test facility. The authors provide guidelines and tools to enable readers to find solutions to their problems. The book covers activities relevant to a wide range of practitioners involved in reservoir exploration, modeling, site operation and monitoring. Fluid injection in fractured media shows specific features that are different than injection in porous media, influencing the reservoir behavior and defining conditions for safe and efficient operation. Therefore, this book is also useful to professionals working on oil & gas, hydrogeology and geothermal projects, and in general for those whose work is related to activities using fluid injection in the ground.

Book Evaluation of CO2 Sequestration Through Enhanced Oil Recovery in West Sak Reservoir

Download or read book Evaluation of CO2 Sequestration Through Enhanced Oil Recovery in West Sak Reservoir written by Vahid Nourpour Aghbash and published by . This book was released on 2013 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: CO2 enhanced oil recovery (EOR) has been proposed as a method of sequestering CO2. This study evaluates using CO2 as an EOR agent in the West Sak reservoir. The injected CO2 mixes with the oil and reduces the oil viscosity, enhancing its recovery. A considerable amount of CO2 is left in the reservoir and 'sequestered'. Due to low reservoir temperature, this process can lead to formation of three hydrocarbon phases in the reservoir. An equation of state was tuned to simulate the West Sak oil and complex phase behavior of the CO2-oil mixtures. A compositional simulator capable of handling three-phase flash calculation and four-phase flow was used to simulate CO2 injection into a three-dimensional heterogeneous pattern model. The results showed that CO2 EOR in the West Sak reservoir increases oil recovery by 4.5% of original oil in place and 48 million metric tons of CO2 could be sequestered. Ignoring four-phase flow underestimated oil recovery and sequestered CO2 volume. Enriching the CO2 with natural gas liquid decreased sequestered CO2 volume without a significant increase in oil recovery. Dissolution of CO2 in the water phase and different water/CO2 slug sizes and ratios did not change the sequestered CO2 volume and oil recovery.

Book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs

Download or read book Projects Investigating Oil Recovery from Naturally Fractured Reservoirs written by United States. National Petroleum Technology Office and published by . This book was released on 1999 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reservoir Simulation of CO2 Sequestration and Enhanced Oil Recovery in Tensleep Formation  Teapot Dome Field

Download or read book Reservoir Simulation of CO2 Sequestration and Enhanced Oil Recovery in Tensleep Formation Teapot Dome Field written by Ricardo Gaviria Garcia and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon dioxide a year under fully operational conditions in 2006, the multiple-partner Teapot Dome project could be one of the world's largest CO2 storage sites. CO2 injection has been used for decades to improve oil recovery from depleted hydrocarbon reservoirs. In the CO2 sequestration technique, the aim is to "co-optimize" CO2 storage and oil recovery. In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to predict the amount of CO2 that can be stored in the Tensleep Formation and the amount of oil that can be produced as a side benefit of CO2 injection. This research discusses the effects of using different reservoir fluid models from EOS regression and fracture permeability in dual porosity models on enhanced oil recovery and CO2 storage in the Tensleep Formation. Oil and gas production behavior obtained from the fluid models were completely different. Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter of a five spot pattern. Compositional fluid model is more convenient for enhanced oil recovery evaluation. Detailed reservoir characterization was performed to represent the complex characteristics of the reservoir. A 3D black oil reservoir simulation model was used to evaluate the effects of fractures in reservoir fluids production. Single porosity simulation model results were compared with those from the dual porosity model. Based on the results obtained from each simulation model, it has been concluded that the pseudo-miscible model can not be used to represent the CO2 injection process in Teapot Dome. Dual porosity models with variable fracture permeability provided a better reproduction of oil and water rates in the highly fractured Tensleep Formation.

Book Continuous CO2 Injection Design in Naturally Fractured Reservoirs Using Neural Network Based Proxy Models

Download or read book Continuous CO2 Injection Design in Naturally Fractured Reservoirs Using Neural Network Based Proxy Models written by Hassan Hamam and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: More than 60% of the original oil in place (OOIP) is left in the ground after the primary and secondary recovery processes. With the introduction of enhanced oil recovery (EOR), that number goes down to about 40% of the OOIP. Carbon dioxide (CO2) injection is one of the most effective EOR methods in naturally fractured reservoirs. The fracture network provides a faster means for fluid flow due to its high conductivity but it is also the cause of premature breakthrough of the injected fluids. However, if employed efficiently, fractures can help push the injected CO2 to the reservoir boundaries so that a large portion of the reservoir fluid interacts with the injected CO2. Zones swept by miscible CO2 reported the lowest residual oil saturation.Continuous CO2 injection is becoming more and more preferred to the popular cyclic pressure pulsing. Continuous CO2 injection has no down time and could potentially provide better CO2 interaction with the reservoir fluid which provides a higher recovery. In this research, artificial neural networks (ANNs) are used to construct robust proxy models with highly predictive capabilities for naturally fractured reservoirs undergoing continuous CO2 injection. The main purpose of this research is to shed more light and understanding on continuous CO2 injection in naturally fractured reservoirs and provide a tool that empowers engineers to make decisions on the fly while evaluating uncertainty and mitigating risk rather than wait months or years to do so. In light of the above, various ANN designs and configurations undergo development and evolution to ultimately be able to provide valuable insights regarding reservoir performance, history matching, and injection design for naturally fractured reservoirs undergoing CO2 injection. Initial ANN designs targeted specific reservoirs using specific fluid compositions from the literature. The designed ANNs were able to provide predictions with a low degree of error. ANN designs went over many complex adjustments, variations, and enhancements until final configurations were reached. The final ANN designs developed in this research surpass previously developed ANNs in similar projects with its capability to handle a huge range of reservoir properties, relative permeability, capillary pressure, and fluid compositions under uncertainty.The reservoir simulation model used in this research is a two-well, two-layer, miscible compositional simulation model working in a dual-porosity system. Critical parameters affected the accuracy and predictability of the ANN designs and they were an essential part of the final ANN configurations. The parameters that a major effect on continuous CO2 injection are reservoir fluid composition, fracture permeability, well spacing, bottomhole flowing pressure (BHFP), thickness, and CO2 injection amount under miscible conditions had the highest impact on recovered oil.The final ANN designs were encompassed inside a graphical user interface that equipped the ANN with uncertainty evaluation capabilities. The ease to use nature of the GUI allows anyone to use the developed ANNs in this research, as well as provide a simple intuitive interface to manipulate input data, run simultaneous sensitivity and uncertainty analysis. The developed ANNs in this research bring us a step closer to achieving real-time simulation for naturally fractured reservoirs undergoing CO2 injection. The correlations embedded in the ANNs were able to overcome reservoir fluid, relative permeability, and capillary pressure limitations that existed in the previous ANN studies.

Book Mechanisms of Oil Recovery During Cyclic CO2 Injection Process

Download or read book Mechanisms of Oil Recovery During Cyclic CO2 Injection Process written by Ali Abedini and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Co Optimization of Enhanced Oil Recovery and Carbon Sequestration

Download or read book Co Optimization of Enhanced Oil Recovery and Carbon Sequestration written by Andrew Leach and published by . This book was released on 2014 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we present what is to our knowledge the first theoretical economic analysis of CO2- enhanced oil recovery (EOR). This technique, which has been used successfully in a number of oil plays (notably in West Texas, Wyoming, and Saskatchewan), entails injection of CO2 into mature oil fields in a manner that reduces the oil's viscosity, thereby enhancing the rate of extraction. As part of this process, significant quantities of CO2 remain sequestered in the reservoir. If CO2 emissions are regulated, oil producers using EOR should therefore be able to earn sequestration credits in addition to oil revenues. We develop a theoretical framework that analyzes the dynamic co-optimization of oil extraction and CO2 sequestration, through the producer's choice at each point in time of an optimal CO2 fraction in the injection stream (the control variable). We find that the optimal fraction is likely to decline monotonically over time, and reach zero before the optimal termination time. Numerical simulations, based on an ongoing EOR project in Wyoming, confirm this result. They show also that cumulative sequestration is positively related to the oil price, and is in fact much more responsive to oil-price increases than to increases in the carbon tax. Only at very high taxes does a tradeoff between oil output and sequestration arise.

Book CO2 Geological Sequestration and Utilization for Enhanced Gas oil Recovery from Molecular Perspectives

Download or read book CO2 Geological Sequestration and Utilization for Enhanced Gas oil Recovery from Molecular Perspectives written by Mingshan Zhang and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric CO2 concentration has been gradually growing since the industrial revolution, leading to climate change and global warming. As a result, carbon capture, utilization, and sequestration (CCUS) has become utterly important for human society. CO2 geological sequestration in depleted shale gas reservoirs is regarded as a promising strategy to mitigate the emission of CO2. As one of the typical clay minerals in shale reservoirs, kaolinite presents two structurally and chemically distinct basal surfaces known as siloxane and gibbsite surfaces which can significantly affect CO2 adsorption in kaolinite nanopores, especially in the presence of water. Nevertheless, due to the complicated surface properties and pore structures, it is practically impossible to distinguish the contributions from two distinct kaolinite surfaces for CO2 adsorption. In addition, to the best of our knowledge, the effect of moisture on CO2 adsorption in different kaolinite nanopores is rarely reported. We systematically explored CO2 adsorption in partially water-saturated kaolinite nanopores by molecular dynamics (MD) and Grand canonical Monte Carlo (GCMC) simulations using the flexible clay model. In the absence of water, CO2 presents a stronger adsorption ability on gibbsite surfaces. In gibbsite pores, the water tends to spread out on the surface forming a thin film while water bridges are observed in siloxane pores. In siloxane mesopores, a more CO2-wet surface appears as pressure increases, while it is not obvious in micropores because of stronger confinement effects. In general, the presence of water will result in the reduction of CO2 sequestration in both gibbsite and siloxane pores, while a slight enhancement is observed in siloxane mesopores when the pressure is quite low. CO2 utilization for enhancing gas recovery has been attracting extensive attention as it can greatly alleviate the financial burden from CO2 capture while it can also achieve CO2 sequestration in the deep formations. Compared with the conventional reservoirs, shale has heterogeneous rock compositions consisting of organic and inorganic matters and some shale formations contain anextensive number of heavier alkanes, such as ethane (C2) and propane (C3). While CO2 huff-n-puff is proved to be an effective method to enhance recovery of methane (C1), competitive adsorption between shale gas mixtures (C1-C2-C3) and CO2 in organic and clay minerals remains unexplored. On the other hand, the different recovery mechanisms of hydrocarbon mixtures during pressure drop, CO2 huff, and CO2 huff are still unclear. We used Grand Canonical Monte Carlo (GCMC) simulations to study competitive sorption of C1-C2-C3 and C1-C2-C3-CO2 mixtures in shale organic and inorganic nanopores under different production schemes. We found that while C1 in the adsorption layer can be readily recovered during pressure drawdown, C2 and C3 are trapped in pores, especially in organic micropores. CO2 injection can effectively recover each component in the adsorption layer in organic pores, while in inorganic pores, the adsorption layer is dominated by CO2 molecules, displacing all hydrocarbon components. Additionally, application of CO2 responsive surfactants provides a novel idea for economical and sustainable oil production. While the experimental work can test and design a promising smart surfactant formula for efficient O/W emulsification and demulsification processes, the microscopic structural properties and interface hydration structures related to CO2 switching mechanisms from molecular perspectives remain unclear. MD simulations are employed to carefully study the interfacial properties of n-heptane/water emulsion before and after purging CO2 using lauric acids (LA) as the surfactant. Before purging CO2, the deprotonated lauric acid (DLA) help to form and stabilize O/W emulsion droplets in aqueous solution due to high interface activity and strong surface electrostatic repulsion, whereas the protonation of lauric acid (PLA) arising from CO2 injection results in the coalescence of emulsion droplets thanks to the increased IFT and surface charge neutralization, which is also in line the potential mean force (PMF) calclation resutls.

Book Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Download or read book Embedded Discrete Fracture Modeling and Application in Reservoir Simulation written by Kamy Sepehrnoori and published by Elsevier. This book was released on 2020-08-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. - Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs - Offers understanding of the impacts of key reservoir properties and complex fractures on well performance - Provides case studies to show how to use the EDFM method for different needs

Book Recovery Improvement

Download or read book Recovery Improvement written by Qiwei Wang and published by Gulf Professional Publishing. This book was released on 2022-09-06 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications. - Covers background information and practical guidelines for various recovery enhancement domains, including chapters on enhanced oil recovery in unconventional reservoirs and carbon sequestration in CO2 gas flooding for more environment-friendly and more sustainable initiatives - Provides effective solutions to control chemistry-related issues and mitigation strategies for potential challenges from an industry list of experts and contributors - Delivers both up-to-date research developments and practical applications, featuring various case studies