EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamic Response Analysis of an Offshore Wind Turbine Supported by a Moored Semi submersible Platform

Download or read book Dynamic Response Analysis of an Offshore Wind Turbine Supported by a Moored Semi submersible Platform written by Mohit Soni and published by . This book was released on 2014 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy, the fastest growing source of renewable energy, is a promising resource for power generation. Offshore wind energy, in particular,offers favorable conditions for power generation--high winds with low turbulence, minimal visual impacts and high generation capacities. Offshore wind turbines mounted on floating platforms are the most economical and viable solution for deep water sites. A semi-submersible platform is an appropriate floating platform for a deep water site, providing stability through high water-plane area. In the wind energy industry, there has been continuing interest in developing larger turbines. At Sandia National Laboratories (SNL), efforts have led to the development of a 13.2 MW wind turbine model with blades 100 meters in length, significantly larger than commercially available blades at present. Such a large wind turbine needs to be carefully analyzed and studied before it can be considered suitable for commercial purposes. The dynamic analysis of the SNL 13.2 MW wind turbine mounted on a moored semi-submersible platform is the subject of this study. This integrated 13.2 MW wind turbine system has been developed and its various physical properties have been studied in this and another associated study. The semi-submersible platform is developed using various modeling tools. For the wind turbine-platform system model developed, dynamic analyses are performed using simulation tools to understand the coupled behavior of the wind turbine and the platform. A reference site is chosen to define the environmental conditions, based on which the short-term extreme response of the offshore wind turbine is estimated. The system is loaded with selected combinations of winds and waves to assess controlling combinations of wind speeds and wave heights that influence the response. The influence of changes in model parameters on overall response is also studied.

Book Dynamic Response and Reliability Analysis of an Offshore Wind Turbine Supported by a Semi submersible Platform

Download or read book Dynamic Response and Reliability Analysis of an Offshore Wind Turbine Supported by a Semi submersible Platform written by Edwin Thomas and published by . This book was released on 2015 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Energy is the fastest growing renewable energy source in the world. The trend is expected to continue with falling costs of technology, energy security concerns and the need to address environmental issues. Offshore wind turbines have a few important advantages over land-based turbines; offshore sites experience stronger and less turbulent winds, there are fewer negative aesthetic impacts in an offshore location, there is greater ease in the transport of wind turbine components over sea than on land, etc. Large offshore wind turbines mounted atop floating platforms offer a viable solution for deepwater sites. Of the various floating platform concepts that are being considered, a moored semi-submersible platform is considered in this study. The dynamic response and reliability analysis of a 13.2~MW offshore wind turbine supported by a moored semi-submersible platform is the subject of this study. A model for this integrated system has been developed and its various physical, geometric, and dynamic properties have been studied in this and another associated study. Loads data for the extreme and fatigue analysis of such systems are generally attained by running time-domain simulations for a range of sea states that are representative of the expected site-specific metocean conditions. The selected site of interest in the North Sea has a water depth of 200 m. The Environmental Contour (EC) method is used to identify sea states of interest that are associated with a target return period (50 years). These sea states are considered in short-term (1-hour) simulations of the integrated turbine-platform-mooring system. The dynamic behavior of the integrated wind turbine system is studied. Critical sea states for the various response loads are identified and the sensitivity of the system to the metocean conditions is discussed. Estimation of 50-year response levels (for turbine loads, platform motions, and the mooring line tension at the fairlead) associated with the target probability is subsequently carried out using 2D and 3D Inverse First-Order Reliability Method (FORM) approaches.

Book Development of a Model for an Offshore Wind Turbine Supported by a Moored Semi submersible Platform

Download or read book Development of a Model for an Offshore Wind Turbine Supported by a Moored Semi submersible Platform written by Watsamon Sahasakkul and published by . This book was released on 2014 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy is one of the fastest growing sources of renewable energy in the world. There has been a lot of research, development, and investment in wind energy in recent years. Offshore sites offer stronger winds and low turbulence, along with fewer noise and visual impacts. Establishing large turbines at deepwater sites offers promising opportunities for generating high power output while utilizing the favorable environmental conditions. Researchers at Sandia National Laboratories (SNL) have developed a very large wind turbine model with a 13.2 MW rating that has 100-meter long blades; this turbine is designated as the SNL100 13.2 MW wind turbine. With a hub height of 146 meters and a rotor diameter of 205 meters, such a large turbine is best suited for offshore sites. Developing a wind turbine model for an offshore site requires that a platform model be developed first. Of the various kinds of floating platforms, a moored semi-submersible platform supporting the wind turbine, which offers stability by virtue of the intercepted water-plane area, is an appropriate choice. The goal of this study is to develop a semi-submersible platform model to support the 13.2 MW wind turbine, while keeping loads and deflections within safe limits. The platform is developed based on work completed as part of the Offshore Code Comparison Collaboration Continuation (OC4) Phase II project, which involved a 5 MW wind turbine supported by a semi-submersible platform. The present study focuses on three important topics: (i) development of the combined offshore wind turbine system model with the 13.2 MW wind turbine, a floating semi-submersible platform, and a mooring system; (ii) the entire procedure involved in modeling and analyzing first-order hydrodynamics using two codes, MultiSurf and WAMIT; and (iii) assembling of the integrated aero-hydro-servo-elastic model considering hydrodynamics in order to verify the steady-state and stochastic response of the integrated wind turbine system.

Book Dynamic Analysis of a Spar type Offshore Floating Wind Turbine and Its Mooring System

Download or read book Dynamic Analysis of a Spar type Offshore Floating Wind Turbine and Its Mooring System written by Xue Xu and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for developing sustainable and renewable energy is increasing due to the greenhouse gas effect and the reducing availability of fossil fuels. Wind energy is one of the cleanest and most sustainable renewable resources. People mainly use two types of wind turbines - onshore and offshore, to harvest the wind energy. Compared with onshore wind, offshore wind resources allow more reliable generation of electricity. In shallow water, bottom-fixed turbines may be used. However, as water depths increase it becomes increasingly difficult to build suitable fixed foundations, and floating offshore wind turbines become attractive. The OC3-Hywind is an offshore floating wind turbine (OFWT) supported by a spar platform and held in place with three mooring lines. It is important to study the dynamic responses of the floating platform and the mooring system behaviour so that the OFWT can be designed and constructed safely and economically and generate electricity with reliability. However, there are not many studies which have validated the numerical simulation results for floating offshore wind turbines with physical experiments while published studies rarely show the details of the mooring line motion behaviour for OFWTs. This thesis investigates the dynamic behaviour of a spar-type OFWT including its mooring systems, analysed under various environmental loads both by using state-of-the-art numerical software and conducting an experiment campaign at the Kelvin Hydrodynamics Laboratory. The free decay test has been carried out first to get the spar platform's motions natural frequencies and damping characteristics. A range of regular and irregular waves has been applied to the platform (both with and without realistic mooring lines) to obtain the platform motion RAO (response amplitude operator) - which can be used to predict the platform dynamic responses under other wave conditions - and to examine the reliability of the numerical predictions under realistic sea conditions. For the mooring line tensions and motion, the software shows its limitations in the calculation. A non-linear snatching phenomenon has been observed at the tank for some wave frequencies, which has rarely been discussed in published research. It is very important to study this non-linear behaviour as it is shown that snatching leads to the high instantaneous mooring line loads and platform accelerations, which could cause the failure of the mooring lines in the real structure.

Book Floating Offshore Wind Energy

Download or read book Floating Offshore Wind Energy written by Joao Cruz and published by Springer. This book was released on 2016-08-20 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a state-of-the-art review of floating offshore wind turbines (FOWT). It offers developers a global perspective on floating offshore wind energy conversion technology, documenting the key challenges and practical solutions that this new industry has found to date. Drawing on a wide network of experts, it reviews the conception, early design stages, load & structural analysis and the construction of FOWT. It also presents and discusses data from pioneering projects. Written by experienced professionals from a mix of academia and industry, the content is both practical and visionary. As one of the first titles dedicated to FOWT, it is a must-have for anyone interested in offshore renewable energy conversion technologies.

Book Tableaux modernes  gouaches  Aquarelles  Pastels  Dessins Monotypes  gravures

Download or read book Tableaux modernes gouaches Aquarelles Pastels Dessins Monotypes gravures written by and published by . This book was released on 1954 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamic Response Analysis of Floating Offshore Wind Turbines with Failed Moorings

Download or read book Dynamic Response Analysis of Floating Offshore Wind Turbines with Failed Moorings written by Yajun Ren and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MARE WINT

Download or read book MARE WINT written by Wiesław Ostachowicz and published by Springer. This book was released on 2016-08-30 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.

Book Dynamics Modeling  Simulation and Analysis of a Floating Offshore Wind Turbine

Download or read book Dynamics Modeling Simulation and Analysis of a Floating Offshore Wind Turbine written by Mohammed Khair Al-Solihat and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: " Floating Offshore Wind Turbines (FOWTs) are a promising technology to harness the abundant offshore wind energy resources in open ocean areas. A FOWT consists of a floating platform, the moorings, and the wind turbine structure (tower + Rotor-Nacelle Assembly (RNA)). The main focus of this thesis is to develop multibody dynamic models that integrate the structural dynamics, and hydrostatic, hydrodynamic, aerodynamic and mooring system loads. Special efforts are also devoted to characterize the mooring and hydrostatic loads as main sources of systems stiffness that shapes the dynamic behavior of the system. Two approaches for modeling the platform/tower dynamics are developed, a rigid multibody model and a coupled rigid-flexible multibody model. Both models treat the platform, nacelle and rotor as six-degrees-of-freedom (6-DOF) rigid bodies. However, modeling the wind turbine tower dynamics differs between these approaches. The rigid model considers the tower as a 6-DOF rigid body while the flexible model represents the tower as a three-dimensional (3D) tapered damped Euler-Bernoulli beam undergoing coupled general rigid body and elastic motions. In both approaches, the wind turbine drivetrain dynamics is also considered to capture the rotor spin response. The equations of motions of both models are derived symbolically using Lagrange's equations. The hydrostatic restoring loads are evaluated through development of a novel nonlinear hydrostatic approach. This approach allows evaluating the exact hydrostatic force and moment and position of the center of buoyancy as function of the platform displacement and finite rotation. New exact expressions for the water plane area restoring moments are developed. The hydrostatic stiffness matrix at an arbitrary position and orientation of the platform is subsequently derived. A quasi-static approach is then developed to determine the cable tensions of the single-segment and multi-segment mooring system configurations proposed to moor the platform to the seabed. The approach uses different governing equations, depending on whether the mooring lines partially rest on the seabed; are suspended; or fully taut. The exact mooring stiffness is subsequently derived and the influence of several mooring system parameters on the mooring system stiffness is investigated. As an alternative to the quasi-static cable model, a lumped mass cable model incorporating the cable-seabed contact effect is developed to integrate the cable dynamics into the FOWT system dynamics. The equations of motion of the mooring line nodes are assembled for the two mooring system configurations under consideration. A new methodology is also presented to calculate the equilibrium profile of the mooring line lying on a seabed as desirable initial conditions for solving the discretized cable equations of motion. Finally, the theoretical models are implemented through a large simulation tool to analyze the dynamic behavior of the spar FOWT system under study. A series of simulations under defined external loads (load cases) are performed to validate the dynamic models. The simulation results are compared with similar results obtained from well-known offshore wind design codes. The simulation results are found to be in very good agreement with the reported results. Numerical experiments are also performed to investigate the influence of the tower flexibility, mooring system configuration, tower twist and cable dynamics on the system dynamic behavior. The results show that the system responses obtained from the rigid body model under-predict the platform yaw response and exhibit less damping than those obtained from the flexible model. It is also found that the mooring system configuration choice does not influence the platform roll and pitch responses or tower elastic deflections." --

Book Dynamics of Fixed Marine Structures

Download or read book Dynamics of Fixed Marine Structures written by N. D. P. Barltrop and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamics of Fixed Marine Structures, Third Edition proves guidance on the dynamic design of fixed structures subject to wave and current action. The text is an update of the ""UR8"" design guide ""Dynamics of Marine Structures"" with discussion of foundations, wind turbulence, offshore installations, earthquakes, and strength and fatigue. The book employs analytical methods of static and dynamic structural analysis techniques, particularly the statistical and spectral methods when applied to loading and in the calculating dynamic responses. The statistical methods are explained when used to wave, wind, and earthquake calculations, together with the problems encountered in actual applications. Of importance to fixed offshore platforms are the soil properties and foundation covering soil behavior, site investigation, testing, seabed stability, gravity structures, and the use of single piles. Methods of forecasting, measuring, and modeling of waves and currents are also presented in offshore structure construction. Basic hydrodynamics is explained in understanding wave theory, and some description is given to forecasting of environmental conditions that will affect the structures. The effects of vortex-induced vibrations on the structure are explained, and the three methods that can prevent vortex-induced oscillations are given. Wind turbulence or wind loads are analyzed against short natural period or long natural periods of structures. The transportation of offshore platforms, installation, and pile driving, including examples of the applications found in the book, are given as well. The guide is helpful for offshore engineers, designers of inshore jetties, clients needing design and analysis work, specialists related to offshore structural engineering, and students in offshore engineering.

Book Frequency Domain Modeling and Multidisciplinary Design Optimization of Floating Offshore Wind Turbines

Download or read book Frequency Domain Modeling and Multidisciplinary Design Optimization of Floating Offshore Wind Turbines written by Meysam Karimi and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Offshore floating wind turbine technology is growing rapidly and has the potential to become one of the main sources of affordable renewable energy. However, this technology is still immature owing in part to complications from the integrated design of wind turbines and floating platforms, aero-hydro-servo-elastic responses, grid integrations, and offshore wind resource assessments. This research focuses on developing methodologies to investigate the technical and economic feasibility of a wide range of floating offshore wind turbine support structures. To achieve this goal, interdisciplinary interactions among hydrodynamics, aerodynamics, structure and control subject to constraints on stresses/loads, displacements/rotations, and costs need to be considered. Therefore, a multidisciplinary design optimization approach for minimum levelized cost of energy executed using parameterization schemes for floating support structures as well as a frequency domain dynamic model for the entire coupled system. This approach was based on a tractable framework and models (i.e. not too computationally expensive) to explore the design space, but retaining required fidelity/accuracy. In this dissertation, a new frequency domain approach for a coupled wind turbine, floating platform, and mooring system was developed using a unique combination of the validated numerical tools FAST and WAMIT. Irregular wave and turbulent wind loads were incorporated using wave and wind power spectral densities, JONSWAP and Kaimal. The system submodels are coupled to yield a simple frequency domain model of the system with a flexible moored support structure. Although the model framework has the capability of incorporating tower and blade structural DOF, these components were considered as rigid bodies for further simplicity here. A collective blade pitch controller was also defined for the frequency domain dynamic model to increase the platform restoring moments. To validate the proposed framework, predicted wind turbine, floating platform and mooring system responses to the turbulent wind and irregular wave loads were compared with the FAST time domain model. By incorporating the design parameterization scheme and the frequency domain modeling the overall system responses of tension leg platforms, spar buoy platforms, and semisubmersibles to combined turbulent wind and irregular wave loads were determined. To calculate the system costs, a set of cost scaling tools for an offshore wind turbine was used to estimate the levelized cost of energy. Evaluation and comparison of different classes of floating platforms was performed using a Kriging-Bat optimization method to find the minimum levelized cost of energy of a 5 MW NREL offshore wind turbine across standard operational environmental conditions. To show the potential of the method, three baseline platforms including the OC3-Hywind spar buoy, the MIT/NREL TLP, and the OC4-DeepCwind semisubmersible were compared with the results of design optimization. Results for the tension leg and spar buoy case studies showed 5.2% and 3.1% decrease in the levelized cost of energy of the optimal design candidates in comparison to the MIT/NREL TLP and the OC3-Hywind respectively. Optimization results for the semisubmersible case study indicated that the levelized cost of energy decreased by 1.5% for the optimal design in comparison to the OC4-DeepCwind.

Book Offshore Wind Energy Technology

Download or read book Offshore Wind Energy Technology written by Olimpo Anaya-Lara and published by John Wiley & Sons. This book was released on 2018-05-29 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: A COMPREHENSIVE REFERENCE TO THE MOST RECENT ADVANCEMENTS IN OFFSHORE WIND TECHNOLOGY Offshore Wind Energy Technology offers a reference based on the research material developed by the acclaimed Norwegian Research Centre for Offshore Wind Technology (NOWITECH) and material developed by the expert authors over the last 20 years. This comprehensive text covers critical topics such as wind energy conversion systems technology, control systems, grid connection and system integration, and novel structures including bottom-fixed and floating. The text also reviews the most current operation and maintenance strategies as well as technologies and design tools for novel offshore wind energy concepts. The text contains a wealth of mathematical derivations, tables, graphs, worked examples, and illustrative case studies. Authoritative and accessible, Offshore Wind Energy Technology: Contains coverage of electricity markets for offshore wind energy and then discusses the challenges posed by the cost and limited opportunities Discusses novel offshore wind turbine structures and floaters Features an analysis of the stochastic dynamics of offshore/marine structures Describes the logistics of planning, designing, building, and connecting an offshore wind farm Written for students and professionals in the field, Offshore Wind Energy Technology is a definitive resource that reviews all facets of offshore wind energy technology and grid connection.

Book Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine

Download or read book Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine written by Yoon Hyeok Bae and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control, mooring dynamics and platform motion. In particular, the numerical tool developed in this study is based on the single turbine analysis tool FAST, which was developed by National Renewable Energy Laboratory (NREL). For linear or nonlinear hydrodynamics of floating platform and generalized-coordinate-based FEM mooring line dynamics, CHARM3D program, hull-riser-mooring coupled dynamics program developed by Prof. M.H. Kim's research group during the past two decades, is incorporated. So, the entire dynamic behavior of floating offshore wind turbine can be obtained by coupled FAST-CHARM3D in the time domain. During the coupling procedure, FAST calculates all the dynamics and control of tower and wind turbine including the platform itself, and CHARM3D feeds all the relevant forces on the platform into FAST. Then FAST computes the whole dynamics of wind turbine using the forces from CHARM3D and return the updated displacements and velocities of the platform to CHARM3D. To analyze the dynamics of MUFOWT, the coupled FAST-CHARM3D is expanded more and re-designed. The global matrix that includes one floating platform and a number of turbines is built at each time step of the simulation, and solved to obtain the entire degrees of freedom of the system. The developed MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can be applied. The coupled dynamic analysis for the three-turbine MUFOWT and five-turbine MUFOWT are carried out and the performances of each turbine and floating platform in normal operational condition are assessed. To investigate the coupling effect between platform and each turbine, one turbine failure event is simulated and checked. The analysis shows that some of the mal-function of one turbine in MUFOWT may induce significant changes in the performance of other turbines or floating platform. The present approach can directly be applied to the development of the remote structural health monitoring system of MUFOWT in detecting partial turbine failure by measuring tower or platform responses in the future. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149465

Book Trends in Maritime Technology and Engineering

Download or read book Trends in Maritime Technology and Engineering written by C. Guedes Soares and published by CRC Press. This book was released on 2022-06-07 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trends in Maritime Technology and Engineering comprises the papers presented at the 6th International Conference on Maritime Technology and Engineering (MARTECH 2022) that was held in Lisbon, Portugal, from 24-26 May 2022. The Conference has evolved from the series of biennial national conferences in Portugal, which have become an international event, and which reflect the internationalization of the maritime sector and its activities. MARTECH 2022 is the sixth of this new series of biennial conferences. The book covers all aspects of maritime activity, including in Volume 1: Structures, Hydrodynamics, Machinery, Control and Design. In Volume 2: Maritime Transportation and Ports, Maritime Traffic, Safety, Environmental Conditions, Renewable Energy, Oil & Gas, and Fisheries and Aquaculture. Trends in Maritime Technology and Engineering aims at academics and professionals in the above mentioned fields.

Book A Quantitative Comparison of the Responses of Three Floating Platforms

Download or read book A Quantitative Comparison of the Responses of Three Floating Platforms written by Jason Mark Jonkman and published by . This book was released on 2010 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents a comprehensive dynamic-response analysis of three offshore floating wind turbine concepts. Models were composed of one 5-MW turbine supported on land and three 5-MW turbines located offshore on a tension leg platform, a spar buoy, and a barge. A loads and stability analysis adhering to the procedures of international design standards was performed for each model using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The concepts are compared based on the calculated ultimate loads, fatigue loads, and instabilities. The results of this analysis will help resolve the fundamental design trade-offs between the floating-system concepts.

Book Offshore Code Comparison Collaboration  Continuation

Download or read book Offshore Code Comparison Collaboration Continuation written by and published by . This book was released on 2013 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

Book Offshore Energy Structures

Download or read book Offshore Energy Structures written by Madjid Karimirad and published by Springer. This book was released on 2014-12-05 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides all the key information needed to design offshore structures for renewable energy applications successfully. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, focusing on underlying physics while eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Coverage of design codes and numerical tools ensures the usefulness of this resource for all those studying and working in the rapidly expanding field of offshore renewable energy.