Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Download or read book Python for Finance Cookbook written by Eryk Lewinson and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.
Download or read book Anticipating Correlations written by Robert Engle and published by Princeton University Press. This book was released on 2009-01-19 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial markets respond to information virtually instantaneously. Each new piece of information influences the prices of assets and their correlations with each other, and as the system rapidly changes, so too do correlation forecasts. This fast-evolving environment presents econometricians with the challenge of forecasting dynamic correlations, which are essential inputs to risk measurement, portfolio allocation, derivative pricing, and many other critical financial activities. In Anticipating Correlations, Nobel Prize-winning economist Robert Engle introduces an important new method for estimating correlations for large systems of assets: Dynamic Conditional Correlation (DCC). Engle demonstrates the role of correlations in financial decision making, and addresses the economic underpinnings and theoretical properties of correlations and their relation to other measures of dependence. He compares DCC with other correlation estimators such as historical correlation, exponential smoothing, and multivariate GARCH, and he presents a range of important applications of DCC. Engle presents the asymmetric model and illustrates it using a multicountry equity and bond return model. He introduces the new FACTOR DCC model that blends factor models with the DCC to produce a model with the best features of both, and illustrates it using an array of U.S. large-cap equities. Engle shows how overinvestment in collateralized debt obligations, or CDOs, lies at the heart of the subprime mortgage crisis--and how the correlation models in this book could have foreseen the risks. A technical chapter of econometric results also is included. Based on the Econometric and Tinbergen Institutes Lectures, Anticipating Correlations puts powerful new forecasting tools into the hands of researchers, financial analysts, risk managers, derivative quants, and graduate students.
Download or read book Financial Risk Forecasting written by Jon Danielsson and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.
Download or read book GARCH Models written by Christian Francq and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation and tests. The book also provides coverage of several extensions such as asymmetric and multivariate models and looks at financial applications. Key features: Provides up-to-date coverage of the current research in the probability, statistics and econometric theory of GARCH models. Numerous illustrations and applications to real financial series are provided. Supporting website featuring R codes, Fortran programs and data sets. Presents a large collection of problems and exercises. This authoritative, state-of-the-art reference is ideal for graduate students, researchers and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.
Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Download or read book Dynamic Models for Volatility and Heavy Tails written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 2013-04-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
Download or read book Volatility and Correlation written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2005-07-08 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School
Download or read book Multivariate Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2013-11-11 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.
Download or read book Understanding Financial Risk Management written by Angelo Corelli and published by Emerald Group Publishing. This book was released on 2019-10-28 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Financial Risk Management provides an innovative approach to financial risk management. With a broad view of theory and the industry, it aims at being a friendly, but serious, starting point for those who encounter risk management for the first time, as well as for more advanced users.
Download or read book Introduction to Modern Time Series Analysis written by Gebhard Kirchgässner and published by Springer Science & Business Media. This book was released on 2008-08-27 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.
Download or read book Dynamic Mixed Models for Familial Longitudinal Data written by Brajendra C. Sutradhar and published by Springer Science & Business Media. This book was released on 2011-01-27 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a theoretical foundation for the analysis of discrete data such as count and binary data in the longitudinal setup. Unlike the existing books, this book uses a class of auto-correlation structures to model the longitudinal correlations for the repeated discrete data that accommodates all possible Gaussian type auto-correlation models as special cases including the equi-correlation models. This new dynamic modelling approach is utilized to develop theoretically sound inference techniques such as the generalized quasi-likelihood (GQL) technique for consistent and efficient estimation of the underlying regression effects involved in the model, whereas the existing ‘working’ correlations based GEE (generalized estimating equations) approach has serious theoretical limitations both for consistent and efficient estimation, and the existing random effects based correlations approach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of independent families by using the class of auto-correlation structures conditional on the random effects. The book also provides models and inferences for discrete longitudinal data in the adaptive clinical trial set up. The book is mathematically rigorous and provides details for the development of estimation approaches under selected familial and longitudinal models. Further, while the book provides special cares for mathematics behind the correlation models, it also presents the illustrations of the statistical analysis of various real life data. This book will be of interest to the researchers including graduate students in biostatistics and econometrics, among other applied statistics research areas. Brajendra Sutradhar is a University Research Professor at Memorial University in St. John’s, Canada. He is an elected member of the International Statistical Institute and a fellow of the American Statistical Association. He has published about 110 papers in statistics journals in the area of multivariate analysis, time series analysis including forecasting, sampling, survival analysis for correlated failure times, robust inferences in generalized linear mixed models with outliers, and generalized linear longitudinal mixed models with bio-statistical and econometric applications. He has served as an associate editor for six years for Canadian Journal of Statistics and for four years for the Journal of Environmental and Ecological Statistics. He has served for 3 years as a member of the advisory committee on statistical methods in Statistics Canada. Professor Sutradhar was awarded 2007 distinguished service award of Statistics Society of Canada for his many years of services to the society including his special services for society’s annual meetings.
Download or read book Estimation Inference and Specification Analysis written by Halbert White and published by Cambridge University Press. This book was released on 1996-06-28 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the consequences of misspecifications for the interpretation of likelihood-based methods of statistical estimation and interference. The analysis concludes with an examination of methods by which the possibility of misspecification can be empirically investigated.
Download or read book Dynamic Econometrics written by David F. Hendry and published by . This book was released on 1995 with total page 918 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main problem in econometric modelling of time series is discovering sustainable and interpretable relationships between observed economic variables. The primary aim of this book is to develop an operational econometric approach which allows constructive modelling. Professor Hendry deals with methodological issues (model discovery, data mining, and progressive research strategies); with major tools for modelling (recursive methods, encompassing, super exogeneity, invariance tests); and with practical problems (collinearity, heteroscedasticity, and measurement errors). He also includes an extensive study of US money demand. The book is self-contained, with the technical background covered in appendices. It is thus suitable for first year graduate students, and includes solved examples and exercises to facilitate its use in teaching. About the Series Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.
Download or read book ESG Investment in the Global Economy written by Tadahiro Nakajima and published by Springer Nature. This book was released on 2021-07-28 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces environmental, social and governance (ESG) investment and clarifies its characteristics as financial securities. It is forecasted that companies’ ESG information will be reflected in their corporate value as much as their financial information is in the future. The special feature of this book is to reveal the characteristics and impact of ESG investment using various quantitative analyses (e.g. EGARCH, asymmetric DCC, copula, VaR, connectedness, dynamic spillover). This book focuses on the relationship between some ESG indexes and the other economic variables, particularly in light of the recent economic environment (e.g. Global Financial Crisis, COIVID-19 pandemic, crude oil price crash). Readers can grasp a larger picture of ESG investment through a survey of its history and current status, predictions of its future, and interpretation of various empirical analysis results.
Download or read book Credit Models and the Crisis written by Damiano Brigo and published by John Wiley & Sons. This book was released on 2010-10-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent financial crisis has highlighted the need for better valuation models and risk management procedures, better understanding of structured products, and has called into question the actions of many financial institutions. It has become commonplace to blame the inadequacy of credit risk models, claiming that the crisis was due to sophisticated and obscure products being traded, but practitioners have for a long time been aware of the dangers and limitations of credit models. It would seem that a lack of understanding of these models is the root cause of their failures but until now little analysis had been published on the subject and, when published, it had gained very limited attention. Credit Models and the Crisis is a succinct but technical analysis of the key aspects of the credit derivatives modeling problems, tracing the development (and flaws) of new quantitative methods for credit derivatives and CDOs up to and through the credit crisis. Responding to the immediate need for clarity in the market and academic research environments, this book follows the development of credit derivatives and CDOs at a technical level, analyzing the impact, strengths and weaknesses of methods ranging from the introduction of the Gaussian Copula model and the related implied correlations to the introduction of arbitrage-free dynamic loss models capable of calibrating all the tranches for all the maturities at the same time. It also illustrates the implied copula, a method that can consistently account for CDOs with different attachment and detachment points but not for different maturities, and explains why the Gaussian Copula model is still used in its base correlation formulation. The book reports both alarming pre-crisis research and market examples, as well as commentary through history, using data up to the end of 2009, making it an important addition to modern derivatives literature. With banks and regulators struggling to fully analyze at a technical level, many of the flaws in modern financial models, it will be indispensable for quantitative practitioners and academics who want to develop stable and functional models in the future.
Download or read book Stock Market Volatility written by Greg N. Gregoriou and published by CRC Press. This book was released on 2009-04-08 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Up-to-Date Research Sheds New Light on This Area Taking into account the ongoing worldwide financial crisis, Stock Market Volatility provides insight to better understand volatility in various stock markets. This timely volume is one of the first to draw on a range of international authorities who offer their expertise on market volatility in devel