Download or read book Dynamic Brain from Neural Spikes to Behaviors written by Maria Marinaro and published by Springer Science & Business Media. This book was released on 2008-10-23 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to graduate students and researchers with different scientific background (including physics, mathematics, biology, neuroscience, etc.) who wish to learn brain science beyond the boundary of their fields. The volume presents 12 thoroughly revised tutorial papers based on lectures given by leading researchers at the 12th International Summer School on Neural Networks in Erice, Italy, in December 2007. The 12 invited and contributed papers presented provide primarily high-level tutorial coverage of the fields related to neuraldynamics, reporting recent experimental and theoretical results investigating the role of collective dynamics in hippocampal and parahippocampal regions and in the mammalian olfactory system. The book is divided into topical sections on hippocampus and neural oscillations, dynamics in olfactory system and behaviour, correlation structure of spiking trains, and neural network theories on associative memory.
Download or read book Dynamic Patterns written by J. A. Scott Kelso and published by MIT Press. This book was released on 1995 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.
Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Download or read book Spikes written by Fred Rieke and published by MIT Press (MA). This book was released on 1997 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for neurobiologists with an interest in mathematical analysis of neural data as well as the growing number of physicists and mathematicians interested in information processing by "real" nervous systems, Spikes provides a self-contained review of relevant concepts in information theory and statistical decision theory.
Download or read book Coordination Neural Behavioral and Social Dynamics written by Armin Fuchs and published by Springer Science & Business Media. This book was released on 2007-12-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most striking features of Coordination Dynamics is its interdisciplinary character. The problems we are trying to solve in this field range from behavioral phenomena of interlimb coordination and coordination between stimuli and movements (perception-action tasks) through neural activation patterns that can be observed during these tasks to clinical applications and social behavior. It is not surprising that close collaboration among scientists from different fields as psychology, kinesiology, neurology and even physics are imperative to deal with the enormous difficulties we are facing when we try to understand a system as complex as the human brain. The chapters in this volume are not simply write-ups of the lectures given by the experts at the meeting but are written in a way that they give sufficient introductory information to be comprehensible and useful for all interested scientists and students.
Download or read book Criticality in neural network behavior and its implications for computational processing in healthy and perturbed conditions written by Axel Sandvig and published by Frontiers Media SA. This book was released on 2023-02-03 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Brain behavior Continuum written by Jose Luis Perez Velazquez and published by World Scientific. This book was released on 2011 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive overview of the main current concepts in brain cognitive activities at the global, collective (or network) level, with a focus on transitions between normal neurophysiology and brain pathological states. It provides a unique approach of linking molecular and cellular aspects of normal and pathological brain functioning with their corresponding network, collective and dynamical manifestations that are subsequently extended to behavioural manifestations of healthy and diseased brains. This book introduces a high-level perspective, searching for simplification amongst the structural and functional complexity of nervous systems by consideration of the distributed interactions that underlie the collective behaviour of the system. The authors hope that this approach could promote a global comprehensive understanding of high-level laws behind the elementary biological processes in the neuroscientific community, while, perhaps, introducing elements of biological complexities to the mathematical/computational readership. The title of the book refers to the main point of the monograph: that there is a smooth continuum between distinct brain activities resulting in different behaviours, and that, due to the plastic nature of the brain, the behaviour can also alter the brain function, thus rendering artificial the boundaries between the brain and its behaviour.
Download or read book Nonlinear Analysis in Neuroscience and Behavioral Research written by Tobias A. Mattei and published by Frontiers Media SA. This book was released on 2016-10-31 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although nonlinear dynamics have been mastered by physicists and mathematicians for a long time (as most physical systems are inherently nonlinear in nature), the recent successful application of nonlinear methods to modeling and predicting several evolutionary, ecological, physiological, and biochemical processes has generated great interest and enthusiasm among researchers in computational neuroscience and cognitive psychology. Additionally, in the last years it has been demonstrated that nonlinear analysis can be successfully used to model not only basic cellular and molecular data but also complex cognitive processes and behavioral interactions. The theoretical features of nonlinear systems (such unstable periodic orbits, period-doubling bifurcations and phase space dynamics) have already been successfully applied by several research groups to analyze the behavior of a variety of neuronal and cognitive processes. Additionally the concept of strange attractors has lead to a new understanding of information processing which considers higher cognitive functions (such as language, attention, memory and decision making) as complex systems emerging from the dynamic interaction between parallel streams of information flowing between highly interconnected neuronal clusters organized in a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm of self-organization derived from the nonlinear dynamics theory has offered an interesting account of the phenomenon of emergence of new complex cognitive structures from random and non-deterministic patterns, similarly to what has been previously observed in nonlinear studies of fluid dynamics. Finally, the challenges of coupling massive amount of data related to brain function generated from new research fields in experimental neuroscience (such as magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal activity) have generated the necessity of new research strategies which incorporate complex pattern analysis as an important feature of their algorithms. Up to now nonlinear dynamics has already been successfully employed to model both basic single and multiple neurons activity (such as single-cell firing patterns, neural networks synchronization, autonomic activity, electroencephalographic measurements, and noise modulation in the cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, previous experimental studies have suggested that several cognitive functions can be successfully modeled with basis on the transient activity of large-scale brain networks in the presence of noise. Such studies have demonstrated that it is possible to represent typical decision-making paradigms of neuroeconomics by dynamic models governed by ordinary differential equations with a finite number of possibilities at the decision points and basic heuristic rules which incorporate variable degrees of uncertainty. This e-book has include frontline research in computational neuroscience and cognitive psychology involving applications of nonlinear analysis, especially regarding the representation and modeling of complex neural and cognitive systems. Several experts teams around the world have provided frontline theoretical and experimental contributions (as well as reviews, perspectives and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination. Rather than a comprehensive compilation of the possible topics in neuroscience and cognitive research to which non-linear may be used, this e-book intends to provide some illustrative examples of the broad range of
Download or read book Neural Masses and Fields Modelling the Dynamics of Brain Activity written by Karl Friston and published by Frontiers Media SA. This book was released on 2015-05-25 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology. In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.
Download or read book The Dynamic Brain written by Mingzhou Ding, PhD and published by Oxford University Press. This book was released on 2011-01-18 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a well-known fact of neurophysiology that neuronal responses to identically presented stimuli are extremely variable. This variability has in the past often been regarded as "noise." At the single neuron level, interspike interval (ISI) histograms constructed during either spontaneous or stimulus evoked activity reveal a Poisson type distribution. These observations have been taken as evidence that neurons are intrinsically "noisy" in their firing properties. In fact, the use of averaging techniques, like post-stimulus time histograms (PSTH) or event-related potentials (ERPs) have largely been justified based on the presence of what was believed to be noise in the neuronal responses. More recent attempts to measure the information content of single neuron spike trains have revealed that a surprising amount of information can be coded in spike trains even in the presence of trial-to-trial variability. Multiple single unit recording experiments have suggested that variability formerly attributed to noise in single cell recordings may instead simply reflect system-wide changes in cellular response properties. These observations raise the possibility that, at least at the level of neuronal coding, the variability seen in single neuron responses may not simply reflect an underlying noisy process. They further raise the very distinct possibility that noise may in fact contain real, meaningful information which is available for the nervous system in information processing. To understand how neurons work in concert to bring about coherent behavior and its breakdown in disease, neuroscientists now routinely record simultaneously from hundreds of different neurons and from different brain areas, and then attempt to evaluate the network activities by computing various interdependence measures, including cross correlation, phase synchronization and spectral coherence. This book examines neuronal variability from theoretical, experimental and clinical perspectives.
Download or read book Bayesian Filter Design for Computational Medicine written by Dilranjan S. Wickramasuriya and published by Springer Nature. This book was released on with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Bayesian Brain written by Kenji Doya and published by MIT Press. This book was released on 2007 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.
Download or read book The Dynamic Brain written by Mingzhou Ding and published by . This book was released on 2011 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical, experimental and clinical perspectives. Readership: Graduate students, postdocs and research scientists in Neuroscience.
Download or read book Applications of Evolutionary Computation written by Cecilia Di Chio and published by Springer. This book was released on 2011-04-27 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the International Conference on the Applications of Evolutionary Computation, EvoApplications 2011, held in Torino, Italy, in April 2011 colocated with the Evo* 2011 events. Thanks to the large number of submissions received, the proceedings for EvoApplications 2011 are divided across two volumes (LNCS 6624 and 6625). The present volume contains contributions for EvoCOMNET, EvoFIN, EvoIHOT, EvoMUSART, EvoSTIM, and EvoTRANSLOC. The 51 revised full papers presented were carefully reviewed and selected from numerous submissions. This volume presents an overview about the latest research in EC. Areas where evolutionary computation techniques have been applied range from telecommunication networks to complex systems, finance and economics, games, image analysis, evolutionary music and art, parameter optimization, scheduling, and logistics. These papers may provide guidelines to help new researchers tackling their own problem using EC.
Download or read book After Phrenology written by Michael L. Anderson and published by MIT Press. This book was released on 2014-12-12 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: A proposal for a fully post-phrenological neuroscience that details the evolutionary roots of functional diversity in brain regions and networks. The computer analogy of the mind has been as widely adopted in contemporary cognitive neuroscience as was the analogy of the brain as a collection of organs in phrenology. Just as the phrenologist would insist that each organ must have its particular function, so contemporary cognitive neuroscience is committed to the notion that each brain region must have its fundamental computation. In After Phrenology, Michael Anderson argues that to achieve a fully post-phrenological science of the brain, we need to reassess this commitment and devise an alternate, neuroscientifically grounded taxonomy of mental function. Anderson contends that the cognitive roles played by each region of the brain are highly various, reflecting different neural partnerships established under different circumstances. He proposes quantifying the functional properties of neural assemblies in terms of their dispositional tendencies rather than their computational or information-processing operations. Exploring larger-scale issues, and drawing on evidence from embodied cognition, Anderson develops a picture of thinking rooted in the exploitation and extension of our early-evolving capacity for iterated interaction with the world. He argues that the multidimensional approach to the brain he describes offers a much better fit for these findings, and a more promising road toward a unified science of minded organisms.
Download or read book Molecular Genetic and Statistical Techniques for Behavioral and Neural Research written by Robert T. Gerlai and published by Academic Press. This book was released on 2018-04-24 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts
Download or read book Synchronization Swarming and Emergent Behaviors in Complex Networks and Neuroscience written by Andrea Duggento and published by Frontiers Media SA. This book was released on 2022-03-24 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: