EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dual Jet Geometrization for Time Dependent Hamiltonians and Applications

Download or read book Dual Jet Geometrization for Time Dependent Hamiltonians and Applications written by Mircea Neagu and published by Springer Nature. This book was released on 2022-08-31 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies a category of mathematical objects called Hamiltonians, which are dependent on both time and momenta. The authors address the development of the distinguished geometrization on dual 1-jet spaces for time-dependent Hamiltonians, in contrast with the time-independent variant on cotangent bundles. Two parts are presented to include both geometrical theory and the applicative models: Part One: Time-dependent Hamilton Geometry and Part Two: Applications to Dynamical Systems, Economy and Theoretical Physics. The authors present 1-jet spaces and their duals as appropriate fundamental ambient mathematical spaces used to model classical and quantum field theories. In addition, the authors present dual jet Hamilton geometry as a distinct metrical approach to various interdisciplinary problems.

Book Matter and Mind

    Book Details:
  • Author : Mario Bunge
  • Publisher : Springer Science & Business Media
  • Release : 2010-09-14
  • ISBN : 9048192250
  • Pages : 325 pages

Download or read book Matter and Mind written by Mario Bunge and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses two of the oldest and hardest problems in both science and philosophy: What is matter?, and What is mind? A reason for tackling both problems in a single book is that two of the most influential views in modern philosophy are that the universe is mental (idealism), and that the everything real is material (materialism). Most of the thinkers who espouse a materialist view of mind have obsolete ideas about matter, whereas those who claim that science supports idealism have not explained how the universe could have existed before humans emerged. Besides, both groups tend to ignore the other levels of existence—chemical, biological, social, and technological. If such levels and the concomitant emergence processes are ignored, the physicalism/spiritualism dilemma remains unsolved, whereas if they are included, the alleged mysteries are shown to be problems that science is treating successfully.

Book The Breadth of Symplectic and Poisson Geometry

Download or read book The Breadth of Symplectic and Poisson Geometry written by Jerrold E. Marsden and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: * The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Book Topological Geometrodynamics

Download or read book Topological Geometrodynamics written by Matti Pitkanen and published by Bentham Science Publishers. This book was released on 2016-03-03 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology.

Book Synergetics

    Book Details:
  • Author : Hermann Haken
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642667848
  • Pages : 279 pages

Download or read book Synergetics written by Hermann Haken and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains most of the invited papers presented at the International Work shop on Synergetics, Schloss E1mau, Bavaria, May 2 to.May 7, 1977. This workshop fol lowed an International Symposium on SynergetiGS at Schloss E1mau, 1972, and an Inter national SUl11l1erschoo1 at Erice, Sicily, 1974. Synergetics is a rather new field of interdisciplinary research which studies the self-organized behavior of systems leading to the formation of structures and func tionings. Indeed the whole universe seems to be organized, with pronounced structures starting from spiral galaxies down to living cells. Furthermore, very many of the most interesting phenomena occur in systems which are far from thermal equilibrium. Synergetics in its present form focusses its attention on those phenomena where dra matic changes occur on a macroscopic scale. Here indeed Synergetics was able to re veal profound analogies between systems in different disciplines ranging from physics to sociology. This volume contains contributions from various fields but the reader will easily discover their cOl11J1on goal. Not only in the natural sciences but also in ecology, sociology, and economy, man is confronted with the problems of complex sys tems. The principles and analogies unearthed by Synergetics will certainly be very he1pfu~ to cope with such difficult problems. I use this opportunity to thank the Vo1kswagenwerk Foundation for its support of the project Synergetics and in particular for sponsoring the International Workshop on Synergetics.

Book Geometry from Dynamics  Classical and Quantum

Download or read book Geometry from Dynamics Classical and Quantum written by José F. Cariñena and published by Springer. This book was released on 2014-09-23 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.

Book Quantization and Discretization at Large Scales

Download or read book Quantization and Discretization at Large Scales written by Florentin Smarandache and published by Infinite Study. This book was released on 2012 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Trends in Mathematical Physics

Download or read book New Trends in Mathematical Physics written by Vladas Sidoravicius and published by Springer Science & Business Media. This book was released on 2009-08-31 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.

Book Hamilton Jacobi Equation  A Global Approach

Download or read book Hamilton Jacobi Equation A Global Approach written by Benton and published by Academic Press. This book was released on 1977-06-29 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hamilton-Jacobi Equation: A Global Approach

Book Sparse Solutions of Underdetermined Linear Systems and Their Applications

Download or read book Sparse Solutions of Underdetermined Linear Systems and Their Applications written by Ming-Jun Lai and published by SIAM. This book was released on 2021-06-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a special solution to underdetermined linear systems where the number of nonzero entries in the solution is very small compared to the total number of entries. This is called a sparse solution. Since underdetermined linear systems can be very different, the authors explain how to compute a sparse solution using many approaches. Sparse Solutions of Underdetermined Linear Systems and Their Applications contains 64 algorithms for finding sparse solutions of underdetermined linear systems and their applications for matrix completion, graph clustering, and phase retrieval and provides a detailed explanation of these algorithms including derivations and convergence analysis. Exercises for each chapter help readers understand the material. This textbook is appropriate for graduate students in math and applied math, computer science, statistics, data science, and engineering. Advisors and postdoctoral scholars will also find the book interesting and useful.

Book Finsler Geometry and Applications

Download or read book Finsler Geometry and Applications written by Aurel Bejancu and published by . This book was released on 1990 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book EPSA Philosophy of Science  Amsterdam 2009

Download or read book EPSA Philosophy of Science Amsterdam 2009 written by Henk W. de Regt and published by Springer Science & Business Media. This book was released on 2011-10-15 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of high-quality research papers in the philosophy of science, deriving from papers presented at the second meeting of the European Philosophy of Science Association in Amsterdam, October 2009.

Book Hamiltonian Methods in the Theory of Solitons

Download or read book Hamiltonian Methods in the Theory of Solitons written by Ludwig Faddeev and published by Springer Science & Business Media. This book was released on 2007-08-10 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.

Book Variational Problems in Differential Geometry

Download or read book Variational Problems in Differential Geometry written by Roger Bielawski and published by Cambridge University Press. This book was released on 2011-10-20 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.

Book Exterior Differential Systems

Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.

Book Foundations of Physics

Download or read book Foundations of Physics written by Robert Bruce Lindsay and published by . This book was released on 1981 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamical Theories of Brownian Motion

Download or read book Dynamical Theories of Brownian Motion written by Edward Nelson and published by Princeton University Press. This book was released on 1967-02-21 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics.