EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quasiparticle and Optical Properties of Quasi two dimensional Systems

Download or read book Quasiparticle and Optical Properties of Quasi two dimensional Systems written by Felipe Homrich da Jornada and published by . This book was released on 2017 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the experimental isolation of graphene in 2004, there has been tremendous interest in studying quasi-two-dimensional (quasi-2D) systems. These atomically thin materials display a number of unique properties not found in their bulk counterparts, such as large self-energy and excitonic effects due to weaker screening in 2D. However, simple dimensionality arguments alone often fail to give quantitative - and sometimes qualitative - explanation of physical phenomena in these systems. Many low-energy excitation processes in these materials involve length scales comparable to the extent of these materials along the confined direction. Thus, many of these interesting properties are a result of the interplay of the physics of 2 and 3 dimensions. In order to predict quasiparticle and optical properties in these materials, it is therefore highly important to use methods that capture the explicit quasi-2D crystal structure and rely on as little experimental input as possible. Ab initio formalisms are well-tested, mature, and predictive methods for calculating physical properties of systems with arbitrary crystal structure and dimensionality. In particular, the ab initio GW and GW plus Bethe-Salpeter equation (BSE) approaches are reliable methods to compute quasiparticle and optical properties of materials without experimental parameters and for systems with arbitrary electronic structure and dimensionality. In this dissertation, we study the quasiparticle and optical properties of quasi-2D systems, with emphasis on graphene and monolayer transition metal dichalcogenides. This dissertation is divided into three parts. In the first part, we introduce the formalisms that allow us to compute quasiparticle and optical properties of material. We include a brief review of the quasiparticle approximation, and connect it to Green's function methods. We then introduce the GW approximation and the BSE as tools to compute quasiparticle and optical properties of materials, respectively. We include a simplified derivation of these two formalisms in terms of many-body perturbation theory and diagrammatic series. We also review how the GW approximation and the BSE are implemented into ab initio electronic-structure codes, such as BerkeleyGW. In the second part of the dissertation, we show our theoretical works on the quasiparticle and optical properties of quasi-2D systems. We compute the quasiparticle bandstructure, optical absorption spectrum, and excitonic series on monolayer MoS2, a prototypical quasi-2D semiconductor. We also understand the origin of novel physics in these materials, such as the presence of excitonic states that cannot be understood in terms of a 2D hydrogenic model. We understand these unique phenomena in terms of the unique features of the screening in 2D, and also show how this leads to severe challenges in applying the GW and GW-BSE approaches to system with reduced dimensionality. We then develop new methods that efficiently capture these fast variations of the screening, and reduce the computational cost of GW and GW-BSE approaches on these systems by orders of magnitude. Finally, in the third part of the dissertation, we show a variety of projects that are collabo- rations between our theoretical group at Berkeley and various experimental groups. In the first collaboration, we perform a joint work with Prof. Tony Heinz’s experimental group, wherein we demonstrate how excitonic effects on graphene can be tuned by carrier doping. Our work goes beyond the independent-particle picture, and includes, without adjustable parameters, the effect of finite quasiparticle lifetimes due to electron-electron and electron-phonon interactions on the optical absorption of graphene. The second project in this part - a collaboration with the experimental groups of Profs. Mike Crommie and Feng Wang - directly measures the exciton binding energy in MoSe2. Because these measurements are performed on a substrate of bilayer graphene, we develop a new method to include the effect of screening from the substrate into our ab initio formalism. Finally, the third joint theory-experiment work was a collaboration with Prof. Mike Crommie’s group, wherein we compute the quasiparticle properties of few-layer MoSe2 and simulate the corresponding scanning-tunneling spectroscopy curves. Our work shows how the electronic structure of MoSe2 evolves with layer number, and elucidates the role of layer hybridization, self-energy effects, and intrinsic/extrinsic screening in the quasiparticle properties of few-layer transition metal dichalcogenides.

Book Essential Physical Properties of Group IV 2D and Defect related Materials

Download or read book Essential Physical Properties of Group IV 2D and Defect related Materials written by 施伯欣 and published by . This book was released on 2018 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diverse Quasiparticle Properties of Emerging Materials

Download or read book Diverse Quasiparticle Properties of Emerging Materials written by Tran Thi Thu Hanh and published by CRC Press. This book was released on 2022-10-07 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diverse Quasiparticle Properties of Emerging Materials: First-Principles Simulations thoroughly explores the rich and unique quasiparticle properties of emergent materials through a VASP-based theoretical framework. Evaluations and analyses are conducted on the crystal symmetries, electronic energy spectra/wave functions, spatial charge densities, van Hove singularities, magnetic moments, spin configurations, optical absorption structures with/without excitonic effects, quantum transports, and atomic coherent oscillations. Key Features Illustrates various quasiparticle phenomena, mainly covering orbital hybridizations and spin-up/spin-down configurations Mainly focuses on electrons and holes, in which their methods and techniques could be generalized to other quasiparticles, such as phonons and photons Considers such emerging materials as zigzag nanotubes, nanoribbons, germanene, plumbene, bismuth chalcogenide insulators Includes a section on applications of these materials This book is aimed at professionals and researchers in materials science, physics, and physical chemistry, as well as upper-level students in these fields.

Book Rich Quasiparticle Properties In Layered Graphene related Systems

Download or read book Rich Quasiparticle Properties In Layered Graphene related Systems written by Ming-fa Lin and published by World Scientific. This book was released on 2023-12-27 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book delves into the fascinating world of quasiparticle properties of graphene-related materials. The authors thoroughly explore the intricate effects of intrinsic and extrinsic interactions on the material's properties, while unifying the single-particle and many-particle properties through the development of a theoretical framework. The book covers a wide range of research topics, including long-range Coulomb interactions, dynamic charge density waves, Friedel oscillations and plasmon excitations, as well as optical reflection and transmission spectra of thin films. Also it highlights the crucial roles of inelastic Coulomb scattering and optical scattering in the quasiparticle properties of layered systems, and the impact of crystal symmetry, number of layers, and stacking configuration on their uniqueness. Furthermore, the authors explore the topological properties of quasiparticles, including 2D time-reversal-symmetry protected topological insulators with quantum spin Hall effect, and rhombohedral graphite with Dirac nodal lines. Meanwhile, the book examines the gate potential application for creating topological localized states and shows topological invariants of 2D Dirac fermions, and binary Z2 topological invariants under chiral symmetry. The calculated results are consistent with the present experimental observations, establishing it as a valuable resource for individuals interested in the quasiparticle properties of novel materials.

Book Fundamental Physicochemical Properties of Germanene related Materials

Download or read book Fundamental Physicochemical Properties of Germanene related Materials written by Chi-Hsuan Lee and published by Elsevier. This book was released on 2023-05-23 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental Physicochemical Properties of Germanene-related Materials: A Theoretical Perspective provides a comprehensive review of germanene-related materials to help users understand the essential properties of these compounds. The book covers various germanium complex states such as germanium oxides, germanium on Ag, germanium/silicon composites and germanium compounds. Diverse phenomena are clearly illustrated using the most outstanding candidates of the germanium/germanene-related material. Delicate simulations and analyses are thoroughly demonstrated under the first-principles method, being fully assisted by phenomenological models. Macroscopic phenomena in chemical systems, including their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry are fully covered. Germanium-based materials play critical roles in the basic and applied sciences, as clearly revealed in other group-IV and group-V condensed-matter systems. Their atomic configurations are suitable for creating the active chemical bonding among the identical and/or different nearest-neighboring atoms leading to diverse physical/chemical/material environments. Provides a comprehensive review of germanene-related materials with a physicochemical and theoretical foundation that is useful for readers in understanding the essential properties of these compounds Presents a unique theoretical framework under single and multi-hybridization theory Contains significant combinations with phenomenological and experimental measurements Focuses on the study of macroscopic phenomena in chemical systems in terms of their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry

Book 2D Monoelemental Materials  Xenes  and Related Technologies

Download or read book 2D Monoelemental Materials Xenes and Related Technologies written by Zongyu Huang and published by CRC Press. This book was released on 2022-04-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Electron Correlation and Quasiparticle Properties in Semiconductors  Semiconductor Surfaces  and Two dimensional Electron Systems

Download or read book Electron Correlation and Quasiparticle Properties in Semiconductors Semiconductor Surfaces and Two dimensional Electron Systems written by Xuejun Zhu and published by . This book was released on 1992 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling  Characterization  and Production of Nanomaterials

Download or read book Modeling Characterization and Production of Nanomaterials written by Vinod Tewary and published by Woodhead Publishing. This book was released on 2022-11-09 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green’s function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focuses on practical applications and industry needs through a solid outlining of the theoretical background Includes emerging nanomaterials and their applications in spintronics and sensing

Book Semiconductor Physics

Download or read book Semiconductor Physics written by Karl W. Böer and published by Springer Nature. This book was released on 2023-02-02 with total page 1408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gives a complete and detailed survey of the field of semiconductor physics. It addresses every fundamental principle, the most important research topics and results, as well as conventional and emerging new areas of application. Additionally it provides all essential reference material on crystalline bulk, low-dimensional, and amorphous semiconductors, including valuable data on their optical, transport, and dynamic properties. This updated and extended second edition includes essential coverage of rapidly advancing areas in semiconductor physics, such as topological insulators, quantum optics, magnetic nanostructures and spintronic systems. Richly illustrated and authored by a duo of internationally acclaimed experts in solar energy and semiconductor physics, this handbook delivers in-depth treatment of the field, reflecting a combined experience spanning several decades as both researchers and educators. Offering a unique perspective on many issues, Semiconductor Physics is an invaluable reference for physicists, materials scientists and engineers throughout academia and industry.

Book Energy Storage and Conversion Materials

Download or read book Energy Storage and Conversion Materials written by Ngoc Thanh Thuy Tran and published by CRC Press. This book was released on 2023-05-03 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the fundamental properties of a wide range of energy storage and conversion materials, covering mainstream theoretical and experimental studies and their applications in green energy. It presents a thorough investigation of diverse physical, chemical, and material properties of rechargeable batteries, supercapacitors, solar cells, and fuel cells, covering the development of theoretical simulations, machine learning, high-resolution experimental measurements, and excellent device performance. Covers potential energy storage (rechargeable batteries and supercapacitors) and energy conversion (solar cells and fuel cells) materials Develops theoretical predictions and experimental observations under a unified quasi-particle framework Illustrates up-to-date calculation results and experimental measurements Describes successful synthesis, fabrication, and measurements, as well as potential applications and near-future challenges Promoting a deep understanding of basic science, application engineering, and commercial products, this work is appropriate for senior graduate students and researchers in materials, chemical, and energy engineering and related disciplines.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book 2D Metal Carbides and Nitrides  MXenes

Download or read book 2D Metal Carbides and Nitrides MXenes written by Babak Anasori and published by Springer Nature. This book was released on 2019-10-30 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

Book Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures

Download or read book Synthesis Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Book Lithium Related Batteries

Download or read book Lithium Related Batteries written by Ngoc Thanh Thuy Tran and published by CRC Press. This book was released on 2022-03-09 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a comprehensive treatment of the advanced microscopic properties of lithium- and sodium-based batteries. It focuses on the development of the quasiparticle framework and the successful syntheses of cathode/electrolyte/anode materials in these batteries. FEATURES Highlights lithium-ion and sodium-ion batteries as well as lithium sulfur-, aluminum-, and iron-related batteries Describes advanced battery materials and their fundamental properties Addresses challenges to improving battery performance Develops theoretical predictions and experimental observations under a unified quasiparticle framework Targets core issues such as stability and efficiencies Lithium-Related Batteries: Advances and Challenges will appeal to researchers and advanced students working in battery development, including those in the fields of materials, chemical, and energy engineering.

Book Fundamentals of Semiconductors

Download or read book Fundamentals of Semiconductors written by Peter YU and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.