Download or read book Distributed Computing in Big Data Analytics written by Sourav Mazumder and published by Springer. This book was released on 2017-08-29 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use. This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations. Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies.
Download or read book Principles of Distributed Database Systems written by M. Tamer Özsu and published by Springer Science & Business Media. This book was released on 2011-02-24 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition of a classic textbook can be used to teach at the senior undergraduate and graduate levels. The material concentrates on fundamental theories as well as techniques and algorithms. The advent of the Internet and the World Wide Web, and, more recently, the emergence of cloud computing and streaming data applications, has forced a renewal of interest in distributed and parallel data management, while, at the same time, requiring a rethinking of some of the traditional techniques. This book covers the breadth and depth of this re-emerging field. The coverage consists of two parts. The first part discusses the fundamental principles of distributed data management and includes distribution design, data integration, distributed query processing and optimization, distributed transaction management, and replication. The second part focuses on more advanced topics and includes discussion of parallel database systems, distributed object management, peer-to-peer data management, web data management, data stream systems, and cloud computing. New in this Edition: • New chapters, covering database replication, database integration, multidatabase query processing, peer-to-peer data management, and web data management. • Coverage of emerging topics such as data streams and cloud computing • Extensive revisions and updates based on years of class testing and feedback Ancillary teaching materials are available.
Download or read book Big Data written by Balamurugan Balusamy and published by John Wiley & Sons. This book was released on 2021-03-15 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.
Download or read book Towards Interoperable Research Infrastructures for Environmental and Earth Sciences written by Zhiming Zhao and published by Springer Nature. This book was released on 2020-07-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions.
Download or read book Distributed Data Management for Grid Computing written by Michael Di Stefano and published by John Wiley & Sons. This book was released on 2005-09-15 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover grid computing-how to successfully build, implement, and manage widely distributed computing architecture With technology budgets under increasing scrutiny and system architecture becoming more and more complex, many organizations are rethinking how they manage and use technology. Keeping a strong business focus, this publication clearly demonstrates that the current ways of tying applications to dedicated hardware are no longer viable in today's competitive, bottom line-oriented environment. This evolution in distributed computing is leading a paradigm shift in leveraging widely distributed architectures to get the most processing power per IT dollar. Presenting a solid foundation of data management issues and techniques, this practical book delves into grid architecture, services, practices, and much more, including: * Why businesses should adopt grid computing * How to master the fundamental concepts and programming techniques and apply them successfully to reach objectives * How to maximize the value of existing IT investments The author has tailored this publication for two distinct audiences. Business professionals will gain a better understanding of how grid computing improves productivity and performance, what impact it can have on their organization's bottom line, and the technical foundations necessary to discuss grid computing with their IT colleagues. Following the author's expert guidance and practical examples, IT professionals, architects, and developers will be equipped to initiate and carry out successful grid computing projects within their own organizations.
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Download or read book Designing Data Intensive Applications written by Martin Kleppmann and published by "O'Reilly Media, Inc.". This book was released on 2017-03-16 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures
Download or read book Distributed and Cloud Computing written by Kai Hwang and published by Morgan Kaufmann. This book was released on 2013-12-18 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. - Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing - Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more - Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery - Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online
Download or read book Program Summary Report written by and published by . This book was released on 1978 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Big Data Processing with Apache Spark written by Srini Penchikala and published by Lulu.com. This book was released on 2018-03-13 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apache Spark is a popular open-source big-data processing framework thatÕs built around speed, ease of use, and unified distributed computing architecture. Not only it supports developing applications in different languages like Java, Scala, Python, and R, itÕs also hundred times faster in memory and ten times faster even when running on disk compared to traditional data processing frameworks. Whether you are currently working on a big data project or interested in learning more about topics like machine learning, streaming data processing, and graph data analytics, this book is for you. You can learn about Apache Spark and develop Spark programs for various use cases in big data analytics using the code examples provided. This book covers all the libraries in Spark ecosystem: Spark Core, Spark SQL, Spark Streaming, Spark ML, and Spark GraphX.
Download or read book Data Processing written by Susan Wooldridge and published by Elsevier. This book was released on 2013-10-22 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Processing: Made Simple, Second Edition presents discussions of a number of trends and developments in the world of commercial data processing. The book covers the rapid growth of micro- and mini-computers for both home and office use; word processing and the 'automated office'; the advent of distributed data processing; and the continued growth of database-oriented systems. The text also discusses modern digital computers; fundamental computer concepts; information and data processing requirements of commercial organizations; and the historical perspective of the computer industry. The computer hardware and software and the development and implementation of a computer system are considered. The book tackles careers in data processing; the tasks carried out by the data processing department; and the way in which the data processing department fits in with the rest of the organization. The text concludes by examining some of the problems of running a data processing department, and by suggesting some possible solutions. Computer science students will find the book invaluable.
Download or read book Distributed Database Management Systems written by Saeed K. Rahimi and published by John Wiley & Sons. This book was released on 2015-02-13 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses issues related to managing data across a distributed database system. It is unique because it covers traditional database theory and current research, explaining the difficulties in providing a unified user interface and global data dictionary. The book gives implementers guidance on hiding discrepancies across systems and creating the illusion of a single repository for users. It also includes three sample frameworks—implemented using J2SE with JMS, J2EE, and Microsoft .Net—that readers can use to learn how to implement a distributed database management system. IT and development groups and computer sciences/software engineering graduates will find this guide invaluable.
Download or read book Applying Integration Techniques and Methods in Distributed Systems and Technologies written by Kecskemeti, Gabor and published by IGI Global. This book was released on 2019-04-12 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. Applying Integration Techniques and Methods in Distributed Systems is a critical scholarly publication that defines the current state of distributed systems, determines further goals, and presents architectures and service frameworks to achieve highly integrated distributed systems and presents solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting topics such as multimedia, programming languages, and smart environments, this book is ideal for system administrators, integrators, designers, developers, researchers, and academicians.
Download or read book Data Mesh written by Zhamak Dehghani and published by "O'Reilly Media, Inc.". This book was released on 2022-03-08 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.
Download or read book Big Data For Dummies written by Judith S. Hurwitz and published by John Wiley & Sons. This book was released on 2013-04-02 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
Download or read book Wiley CPA Examination Review 2007 2008 Problems and Solutions written by Patrick R. Delaney and published by John Wiley & Sons. This book was released on 2007-06-11 with total page 1465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wiley CPA Exam Review 34th Edition ? 2007-2008 Volume 1 Outlines and Study Guides * Covers all four sections of the CPA examination point by point * Stresses important topical areas to study for each part * Helps establish a self-study preparation program * Divides exam into 45 manageable study units * Provides an outline format supplemented by brief examples and illustrations * Makes material easy to read, understand, and remember * Includes timely, up-to-the-minute coverage for the computerized exam * Explains step-by-step examples of the "solutions approach" * Contains all current AICPA content requirements for all four sections of the exam Volume 2 Problems and Solutions * Offers selected problems from all four examination sections * Contains rationale for correct or incorrect multiple-choice answers * Covers the new simulation-style problems-offering more than 75 practice questions * Details a "solutions approach" to each problem * Updates unofficial answers to reflect current laws and standards * Groups multiple-choice questions into topical categories within modules for easy cross-referencing * Provides a sample examination for each of the four exam parts The computer-based CPA exam is here! Are you ready? The 34th Edition of the Wiley CPA Exam Review is revised and updated for the new computerized exam, containing AICPA sample test questions released as recently as April 2007. To help candidates prepare for the new exam format, this edition includes a substantial number of the new simulation-type questions. Passing the CPA exam on your first attempt is possible! We'd like to help. Get Even More Information Online: You'll find a wide range of aids for doing your best on the CPA exam at wiley.com/cpa, including content updates, CPA exam study and test-taking tips, and more. All Wiley CPA Exam Review products are listed on the site.
Download or read book Knowledge Graphs and Big Data Processing written by Valentina Janev and published by Springer Nature. This book was released on 2020-07-15 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.