EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

Download or read book Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations written by and published by . This book was released on 2007 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous and docking scenarios. The proposed control algorithm combines the efficiency of the Linear Quadratic Regulator (LQR) and the robust collision avoidance capability of the Artificial Potential Function (APF) method. The LQR control effort serves as the attractive force toward goal positions, while the APF-based repulsive functions provide collision avoidance for both fixed and moving obstacles. The combination of the LQR and APF control logics, referred to as the LQR/APF control algorithm, yielded promising results as demonstrated by the numerous multiple spacecraft maneuver simulations reported in this dissertation. In order to validate the proposed control approach, a multiple spacecraft model validation and visualization technique was developed using a versatile MATLABSatellite Toll Kit (STK) interface to propagate the spacecraft models, compare against STK generated ephemeris, and animate for analysis. The MATLAB-STK interface efficacy was demonstrated during the evaluation and analysis of the innovative LQR/APF multiple spacecraft control algorithm. The LQR/APF multiple spacecraft close proximity control algorithm was developed, refined, and thoroughly simulated using high fidelity six Degree of Freedom (DOF) spacecraft models. In order to evaluate the stability and robustness of the control approach a Monte-Carlo simulations set was run. The LQR/APF control algorithm was further evaluated by virtual hardware-in-the-loop implementation at the NPS Spacecraft Robotics Laboratory. The laboratory hosts the Autonomous Docking and Spacecraft Servicing testbed which allows for on-the-ground testing of close proximity multiple spacecraft control concepts.

Book Intelligent Autonomous Control of Spacecraft with Multiple Constraints

Download or read book Intelligent Autonomous Control of Spacecraft with Multiple Constraints written by Qinglei Hu and published by Springer Nature. This book was released on 2023-05-02 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the intelligent autonomous control problems for spacecraft with multiple constraints, such as pointing/path constraints, linear/angular velocity constraints, performance constraints, etc. It provides an almost self-contained presentation of dynamics modeling, controller design and analysis, as well as simulation studies. The book aims to offer a valuable guide for researchers and aerospace engineers to address the theoretical and technical difficulties in different applications, ranging from spacecraft attitude reorientation and tracking to spacecraft proximity operations, and is mainly intended for technical and engineering staff engaged in spacecraft dyanmics and control areas.

Book Distributed Attitude Consensus of Multiple Flexible Spacecraft

Download or read book Distributed Attitude Consensus of Multiple Flexible Spacecraft written by Ti Chen and published by Springer Nature. This book was released on 2022-09-17 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly presents the authors' recent studies on the distributed attitude consensus of multiple flexible spacecraft. Modified Rodrigues parameters and rotation matrix are used to represent spacecraft attitude. Several distributed adaptive controllers are presented with theoretical analyses, numerical simulations and experimental verifications. The authors intend to provide a manual that allows researchers, engineers and students in the field of aerospace engineering and mechanics to learn a theoretical and practical approach to the design of attitude consensus algorithms.

Book Advances in Smart Vehicular Technology  Transportation  Communication and Applications

Download or read book Advances in Smart Vehicular Technology Transportation Communication and Applications written by Shaoquan Ni and published by Springer Nature. This book was released on 2023-05-14 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes selected papers from the fifth International Conference on Smart Vehicular Technology, Transportation, Communication and Applications (VTCA 2022), held in online mode during December 24–26, 2022. The book includes research works from engineers, researchers, and practitioners interested in the advances and applications in the field of vehicle technology and communication. The book covers four tracks, namely (1) vehicular networking security, (2) vehicular electronics, (3) intelligent transportation systems and applications, and (4) smart vehicular communication networks and telematics.

Book Attitude Takeover Control of Failed Spacecraft

Download or read book Attitude Takeover Control of Failed Spacecraft written by Panfeng Huang and published by Elsevier. This book was released on 2024-07-11 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Attitude Takeover Control of Failed Spacecraft is both necessary and urgently required. This book provides an overview of the topic and the role of space robots in handling various types of failed spacecraft. The book divides the means of attitude takeover control into three types, including space manipulator capture, tethered space robot capture, and cellular space robot capture. Spacecraft attitude control is the process of controlling the orientation of a spacecraft (vehicle or satellite) with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. It has become increasingly important: with the increasing number of human space launch activities, the number of failed spacecraft has increased dramatically in recent years. Proposes a means of attitude takeover control of failed spacecraft Provides a comprehensive overview of current attitude takeover control technologies of space robots Covers space manipulator capture, tethered space robot capture, and cellular space robot capture

Book Issues in Robotics and Automation  2011 Edition

Download or read book Issues in Robotics and Automation 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Robotics and Automation / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Robotics and Automation. The editors have built Issues in Robotics and Automation: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Robotics and Automation in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Robotics and Automation: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

Download or read book Agent Based Software for the Autonomous Control of Formation Flying Spacecraft written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-20 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful). How, Jonathan P. and Campbell, Mark and Dennehy, Neil (Technical Monitor) Goddard Space Flight Center MIT-OSP-6891850

Book Guidance  Navigation and Control System for Autonomous Proximity Operations and Docking of Spacecraft

Download or read book Guidance Navigation and Control System for Autonomous Proximity Operations and Docking of Spacecraft written by Daero Lee and published by . This book was released on 2009 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This study develops an integrated guidance, navigation and control system for use in autonomous proximity operations and docking of spacecraft. A new approach strategy is proposed based on a modified system developed for use with the International Space Station. It is composed of three "V-bar hops" in the closing transfer phase, two periods of stationkeeping and a "straight line V-bar" approach to the docking port. Guidance, navigation and control functions are independently designed and are then integrated in the form of linear Gaussian-type control. The translational maneuvers are determined through the integration of the state-dependent Riccati equation control formulated using the nonlinear relative motion dynamics with the weight matrices adjusted at the steady state condition. The reference state is provided by a guidance function, and the relative navigation is performed using a rendezvous laser vision system and a vision sensor system, where a sensor mode change is made along the approach in order to provide effective navigation. The rotational maneuvers are determined through a linear quadratic Gaussian-type control using star trackers and gyros, and a vision sensor. The attitude estimation mode change is made from absolute estimation to relative attitude estimation during the stationkeeping phase inside the approach corridor. The rotational controller provides the precise attitude control using weight matrices adjusted at the steady state condition, including the uncertainty of the moment of inertia and external disturbance torques. A six degree-of-freedom simulation demonstrates that the newly developed GNC system successfully autonomously performs proximity operations and meets the conditions for entering the final docking phase"--Abstract, leaf iii.

Book Spacecraft Autonomous Navigation Technologies Based on Multi source Information Fusion

Download or read book Spacecraft Autonomous Navigation Technologies Based on Multi source Information Fusion written by Dayi Wang and published by Springer Nature. This book was released on 2020-07-31 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.

Book Integrated Optimal and Robust Control of Spacecraft in Proximity Operations

Download or read book Integrated Optimal and Robust Control of Spacecraft in Proximity Operations written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure eformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the O-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closed-form, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-of freedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances.

Book Autonomous and Autonomic Systems  With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems

Download or read book Autonomous and Autonomic Systems With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems written by Walt Truszkowski and published by Springer Science & Business Media. This book was released on 2009-11-12 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the early 1990s, NASA Goddard Space Flight Center started researching and developing autonomous and autonomic ground and spacecraft control systems for future NASA missions. This research started by experimenting with and developing expert systems to automate ground station software and reduce the number of people needed to control a spacecraft. This was followed by research into agent-based technology to develop autonomous ground c- trol and spacecraft. Research into this area has now evolved into using the concepts of autonomic systems to make future space missions self-managing and giving them a high degree of survivability in the harsh environments in which they operate. This book describes much of the results of this research. In addition, it aimstodiscusstheneededsoftwaretomakefutureNASAspacemissionsmore completelyautonomousandautonomic.Thecoreofthesoftwareforthesenew missions has been written for other applications or is being applied gradually in current missions, or is in current development. It is intended that this book should document how NASA missions are becoming more autonomous and autonomic and should point to the way of making future missions highly - tonomous and autonomic. What is not covered is the supporting hardware of these missions or the intricate software that implements orbit and at- tude determination, on-board resource allocation, or planning and scheduling (though we refer to these technologies and give references for the interested reader).

Book Robust Control and Learning for Autonomous Spacecraft Proximity Operations with Uncertainty

Download or read book Robust Control and Learning for Autonomous Spacecraft Proximity Operations with Uncertainty written by Charles E. Oestreich and published by . This book was released on 2021 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the number of spacecraft and debris objects in orbit rapidly increases, active debris removal and satellite servicing efforts are becoming critical to maintain a safe and usable orbital environment. At the same time, future unmanned solar system exploration missions are targeting challenging destinations for scientific data collection. For practical realization of these technologies, the involved spacecraft must be highly autonomous and able to perform complex proximity operations maneuvers in a safe manner. This requires that the guidance and control system must reliably address inevitable sources of uncertainty while performing the maneuvers.

Book Distributed Space Missions for Earth System Monitoring

Download or read book Distributed Space Missions for Earth System Monitoring written by Marco D&'Errico and published by Springer Science & Business Media. This book was released on 2012-09-13 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title analyzes distributed Earth observation missions from different perspectives. In particular, the issues arising when the payloads are distributed on different satellites are considered from both the theoretical and practical points of view. Moreover, the problems of designing, measuring, and controlling relative trajectories are thoroughly presented in relation to theory and applicable technologies. Then, the technological challenges to design satellites able to support such missions are tackled. An ample and detailed description of missions and studies complements the book subject.

Book Autonomous Time optimal Spacecraft Rendezvous and Proximity Operations Using Stabilized Continuation

Download or read book Autonomous Time optimal Spacecraft Rendezvous and Proximity Operations Using Stabilized Continuation written by Emily Margaret Kollin and published by . This book was released on 2016 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis addresses the minimum-time rendezvous optimal control problem by implementing continuation with a stabilizing input. The rendezvous problem is first formulated as an optimal control problem which is then parameterized to enable the inclusion of the continuation parameter. A stabilizing input is then applied to attenuate the errors accumulated during the process of numerical integration. In this work, a state feedback stabilizing term with an additive open-loop control stabilizing term is implemented. By applying stabilized continuation to a rendezvous scenario in which two spacecraft are initialized in the same planar, circular orbit separated by some phase angle, a family of minimum-time rendezvous solutions is obtained for variable levels of thrust, mass flow rate, or initial phase angle separation. The approach is first demonstrated on a linear harmonic oscillator problem, and then applied to the Keplerian two-body motion model, with and without the inclusion of atmospheric drag perturbations. In addition to rendezvous trajectories, the approach is also applied to generate kinetic impact trajectories. This work considers only translational dynamics in two-dimensional space, however, the scope is not limited strictly to circular orbits. The effectiveness of the stabilized continuation scheme when used to generate minimum-time rendezvous and kinetic impact trajectories is demonstrated through simulations. The optimality of the solutions is verified with the Hamiltonian. The performance of the stabilized continuation scheme is compared against that of a direct shooting method, and the results obtained in this thesis are compared to other results from similar applications in the literature.

Book Autonomous Navigation of Distributed Spacecraft Using Intersatellite Laser Communications

Download or read book Autonomous Navigation of Distributed Spacecraft Using Intersatellite Laser Communications written by Pratik Kamlesh Dave and published by . This book was released on 2020 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous navigation refers to satellites performing on-board, real-time navigation without external input. As satellite systems evolve into more distributed architectures, autonomous navigation can help mitigate challenges in ground operations, such as determining and disseminating orbit solutions. Several autonomous navigation methods have been previously studied, using some combination of on-board sensors that can measure relative range or bearing to known bodies, such as horizon and star sensors (Hicks and Wiesel, 1992) or magnetometers and sun sensors (Psiaki, 1999), however these methods are typically limited to low Earth orbit (LEO) altitudes or other specific orbit cases. Another autonomous navigation method uses intersatellite data, or direct observations of the relative position vector from one satellite to another, to estimate the orbital positions of both spacecraft simultaneously. The seminal study of the intersatellite method assumes the use of radio time-of-flight measurements of intersatellite range, and a visual tracking camera system for measuring the inertial bearing from one satellite to another (Markley, 1984). Due to the limited range constraints of passively illuminated visual tracking systems, many of the previous studies restrict the separation between satellites to less than 1,000 kilometers (e.g., Psiaki, 2011), or simply drop the use of measuring intersatellite bearing and rely solely on obtaining a large distribution of intersatellite range measurements for state estimation (e.g., Xu et al., 2014). These assumptions have limited the assessment of the performance capability of autonomous navigation using intersatellite measurements for more general mission applications. In this thesis, we investigate the performance of using laser communication (lasercom) crosslinks in order to achieve all necessary intersatellite measurements for autonomous navigation. Lasercom systems are capable of measuring both range and bearing to a receiving terminal with greater precision than traditional methods, and can do so over larger separations between satellites. We develop a simulation framework to model the measurements of intersatellite range and bearing using lasercom crosslinks in distributed satellite systems, with consideration of varying orbital operating environments, constellation size and distribution, and network topologies. We implement two estimation algorithms: an extended Kalman filter (EKF) used with Monte Carlo sampling for performance analyses, and a Cram~r-Rao lower-bound (CRLB) computation for uncertainty analyses. We evaluate several case studies modeled off of existing and planned constellation missions in order to demonstrate the new capabilities of performing intersatellite navigation with lasercom links in both near-Earth and deep-space orbital applications. Performance targets are generated from the current state-of-the-art navigation capabilities demonstrated by Global Navigation Satellite Systems (GNSS) in Earth-orbit, and by radiometric tracking and orbit estimation using the Deep Space Network (DSN) in deep-space orbits. For Earth-orbiting applications, we simulate a relay satellite system in geosynchronous orbit (GEO) inspired by current optical communications missions in development by both ESA and NASA, and Walker constellations in LEO inspired by the upcoming mega-constellations for global broadband internet service, such as those proposed by SpaceX and Telesat. In both case studies, we demonstrate improved navigation performance over the current state-of-the-art in GNSS receiver technologies by using intersatellite measurements from lasercom crosslinks. Monte Carlo simulations show median total position errors better than 3 meters in LEO, 12 meters in GEO, and 45 meters in high-altitude or highly-eccentric orbits (HEO), showing promise as an alternative navigation method to GNSS in Earth-orbiting environments. We also simulate current and future Mars-orbiting missions as examples of deep-space applications. In one case study, we create an ad-hoc constellation comprised of low-altitude Mars exploration orbiters modeled off of current Mars-orbiting missions. In a second case study, we focus on a high-altitude constellation proposed for dedicated Earth-to-Mars networked communications. Again, in both case studies, we demonstrate improved navigation performance over the current state-of-the-art in DSN radiometric orbit solutions by using intersatellite measurements from lasercom crosslinks. Monte Carlo simulations show stable median total position errors better than 25 meters for Mars-orbit, which demonstrates a notable improvement both spatially and temporally versus DSN orbit estimation, mitigating the large cost and time constraints associated with DSN tracking. These results demonstrate the promise of using lasercom intersatellite links for autonomous navigation, offering enhanced performance over current state-of-the-art capabilities, and a greater applicability to missions both near Earth and beyond.