EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distributions and the Boundary Values of Analytic Functions

Download or read book Distributions and the Boundary Values of Analytic Functions written by E. J. Beltrami and published by Academic Press. This book was released on 2014-05-12 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributions and the Boundary Values of Analytic Functions focuses on the tools and techniques of distribution theory and the distributional boundary behavior of analytic functions and their applications. The publication first offers information on distributions, including spaces of testing functions, distributions of finite order, convolution and regularization, and testing functions of rapid decay and distributions of slow growth. The text then examines Laplace transform, as well as Laplace transforms of distributions with arbitrary support. The manuscript ponders on distributional boundary values of analytic functions, including causal and passive operators, analytic continuation and uniqueness, boundary value theorems and generalized Hilbert transforms, and representation theorems for half-plane holomorphic functions with S' boundary behavior. The publication is a valuable source of data for researchers interested in distributions and the boundary values of analytic functions.

Book Boundary Values And Convolution In Ultradistribution Spaces

Download or read book Boundary Values And Convolution In Ultradistribution Spaces written by Stevan Pilipovic and published by World Scientific. This book was released on 2007-07-20 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the construction and characterization of important ultradistribution spaces and studies properties and calculations of ultradistributions such as boundedness and convolution. Integral transforms of ultradistributions are constructed and analyzed. The general theory of the representation of ultradistributions as boundary values of analytic functions is obtained and the recovery of the analytic functions as Cauchy, Fourier-Laplace, and Poisson integrals associated with the boundary value is proved.Ultradistributions are useful in applications in quantum field theory, partial differential equations, convolution equations, harmonic analysis, pseudo-differential theory, time-frequency analysis, and other areas of analysis. Thus this book is of interest to users of ultradistributions in applications as well as to research mathematicians in areas of analysis.

Book Analytic Functions and Distributions in Physics and Engineering

Download or read book Analytic Functions and Distributions in Physics and Engineering written by Bernard W. Roos and published by John Wiley & Sons. This book was released on 1969 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic functions -- Fourier transforms, causality, and dispersion relations -- The Wiener-Hopf technique -- Boundary value problems for sectionally analytic functions -- Distributions -- Applications in neutron transport theory -- Applications in plasma physics -- Appendix A. Paths, contours, and regions in the complex plane -- Appendix B. Order relations.

Book Harmonic Analysis and Boundary Value Problems in the Complex Domain

Download or read book Harmonic Analysis and Boundary Value Problems in the Complex Domain written by Mkhitar M. Djrbashian and published by Springer Science & Business Media. This book was released on 1993 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1 Preliminary results. Integral transforms in the complex domain.- 1.1 Introduction.- 1.2 Some identities.- 1.3 Integral representations and asymptotic formulas.- 1.4 Distribution of zeros.- 1.5 Identities between some Mellin transforms.- 1.6 Fourier type transforms with Mittag-Leffler kernels.- 1.7 Some consequences.- 1.8 Notes.- 2 Further results. Wiener-Paley type theorems.- 2.1 Introduction.- 2.2 Some simple generalizations of the first fundamental Wiener-Paley theorem.- 2.3 A general Wiener-Paley type theorem and some particular results.- 2.4 Two important cases of the general Wiener-Paley type theorem.- 2.5 Generalizations of the second fundamental Wiener-Paley theorem.- 2.6 Notes.- 3 Some estimates in Banach spaces of analytic functions.- 3.1 Introduction.- 3.2 Some estimates in Hardy classes over a half-plane.- 3.3 Some estimates in weighted Hardy classes over a half-plane.- 3.4 Some estimates in Banach spaces of entire functions of exponential type.- 3.5 Notes.- 4 Interpolation series expansions in spacesW1/2, ?p, ?of entire functions.- 4.1 Introduction.- 4.2 Lemmas on special Mittag-Leffler type functions.- 4.3 Two special interpolation series.- 4.4 Interpolation series expansions.- 4.5 Notes.- 5 Fourier type basic systems inL2(0, ?).- 5.1 Introduction.- 5.2 Biorthogonal systems of Mittag-Leffler type functions and their completeness inL2(0, ?).- 5.3 Fourier series type biorthogonal expansions inL2(0, ?).- 5.4 Notes.- 6 Interpolation series expansions in spacesWs+1/2, ?p, ?of entire functions.- 6.1 Introduction.- 6.2 The formulation of the main theorems.- 6.3 Auxiliary relations and lemmas.- 6.4 Further auxiliary results.- 6.5 Proofs of the main theorems.- 6.6 Notes.- 7 Basic Fourier type systems inL2spaces of odd-dimensional vector functions.- 7.1 Introduction.- 7.2 Some identities.- 7.3 Biorthogonal systems of odd-dimensional vector functions.- 7.4 Theorems on completeness and basis property.- 7.5 Notes.- 8 Interpolation series expansions in spacesWs, ?p, ?of entire functions.- 8.1 Introduction.- 8.2 The formulation of the main interpolation theorem.- 8.3 Auxiliary relations and lemmas.- 8.4 Further auxiliary results.- 8.5 The proof of the main interpolation theorem.- 8.6 Notes.- 9 Basic Fourier type systems inL2spaces of even-dimensional vector functions.- 9.1 Introduction.- 9.2 Some identities.- 9.3 The construction of biorthogonal systems of even-dimensional vector functions.- 9.4 Theorems on completeness and basis property.- 9.5 Notes.- 10 The simplest Cauchy type problems and the boundary value problems connected with them.- 10.1 Introduction.- 10.2 Riemann-Liouville fractional integrals and derivatives.- 10.3 A Cauchy type problem.- 10.4 The associated Cauchy type problem and the analog of Lagrange formula.- 10.5 Boundary value problems and eigenfunction expansions.- 10.6 Notes.- 11 Cauchy type problems and boundary value problems in the complex domain (the case of odd segments).- 11.1 Introduction.- 11.2 Preliminaries.- 11.3 Cauchy type problems and boundary value problems containing the operators $$ {\mathbb{L}_{s + 1/2}}$$ and $$ \mathbb{L}_{s + 1/2} *$$.- 11.4 Expansions inL2{?2s+1(?)} in terms of Riesz bases.- 11.5 Notes.- 12 Cauchy type problems and boundary value problems in the complex domain (the case of even segments).- 12.1 Introduction.- 12.2 Preliminaries.- 12.3 Cauchy type problems and boundary value problems containing the operators $${{\mathbb{L}}_{s}} $$ and $$ \mathbb{L}_{s} *$$.- 12.4 Expansions inL2{?2s(?)} in terms of Riesz bases.- 12.5

Book The Hilbert Transform of Schwartz Distributions and Applications

Download or read book The Hilbert Transform of Schwartz Distributions and Applications written by J. N. Pandey and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a modern and up-to-date treatment of the Hilberttransform of distributions and the space of periodic distributions.Taking a simple and effective approach to a complex subject, thisvolume is a first-rate textbook at the graduate level as well as anextremely useful reference for mathematicians, applied scientists,and engineers. The author, a leading authority in the field, shares with thereader many new results from his exhaustive research on the Hilberttransform of Schwartz distributions. He describes in detail how touse the Hilbert transform to solve theoretical and physicalproblems in a wide range of disciplines; these include aerofoilproblems, dispersion relations, high-energy physics, potentialtheory problems, and others. Innovative at every step, J. N. Pandey provides a new definitionfor the Hilbert transform of periodic functions, which isespecially useful for those working in the area of signalprocessing for computational purposes. This definition could alsoform the basis for a unified theory of the Hilbert transform ofperiodic, as well as nonperiodic, functions. The Hilbert transform and the approximate Hilbert transform ofperiodic functions are worked out in detail for the first time inbook form and can be used to solve Laplace's equation with periodicboundary conditions. Among the many theoretical results proved inthis book is a Paley-Wiener type theorem giving thecharacterization of functions and generalized functions whoseFourier transforms are supported in certain orthants of Rn. Placing a strong emphasis on easy application of theory andtechniques, the book generalizes the Hilbert problem in higherdimensions and solves it in function spaces as well as ingeneralized function spaces. It simplifies the one-dimensionaltransform of distributions; provides solutions to thedistributional Hilbert problems and singular integral equations;and covers the intrinsic definition of the testing function spacesand its topology. The book includes exercises and review material for all majortopics, and incorporates classical and distributional problems intothe main text. Thorough and accessible, it explores new ways to usethis important integral transform, and reinforces its value in bothmathematical research and applied science. The Hilbert transform made accessible with many new formulas anddefinitions Written by today's foremost expert on the Hilbert transform ofgeneralized functions, this combined text and reference covers theHilbert transform of distributions and the space of periodicdistributions. The author provides a consistently accessibletreatment of this advanced-level subject and teaches techniquesthat can be easily applied to theoretical and physical problemsencountered by mathematicians, applied scientists, and graduatestudents in mathematics and engineering. Introducing many new inversion formulas that have been developedand applied by the author and his research associates, the book: * Provides solutions to the distributional Hilbert problem andsingular integral equations * Focuses on the Hilbert transform of Schwartz distributions,giving intrinsic definitions of the space H(D) and its topology * Covers the Paley-Wiener theorem and provides many importanttheoretical results of importance to research mathematicians * Provides the characterization of functions and generalizedfunctions whose Fourier transforms are supported in certainorthants of Rn * Offers a new definition of the Hilbert transform of the periodicfunction that can be used for computational purposes in signalprocessing * Develops the theory of the Hilbert transform of periodicdistributions and the approximate Hilbert transform of periodicdistributions * Provides exercises at the end of each chapter--useful toprofessors in planning assignments, tests, and problems

Book Generalized Functions

    Book Details:
  • Author : Ram P. Kanwal
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 0817681744
  • Pages : 490 pages

Download or read book Generalized Functions written by Ram P. Kanwal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises

Book Lumped and Distributed Passive Networks

Download or read book Lumped and Distributed Passive Networks written by M. Ronald Wohlers and published by Academic Press. This book was released on 2013-10-22 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lumped and Distributed Passive Networks: A Generalized and Advanced Viewpoint considers the mathematical study of a subset of passive linear operators. This five-chapter focuses on the questions of analysis and representation of such operators and illustrates the results of these analyses by obtaining some of the limitations that are imposed on the performance of passive systems. The first two chapters deal with the structure of general linear passive operators. These chapters specifically look into the theory of distributions, called generalized functions. The third and fourth chapters illustrate the application of passive operator theory to rational (lumped) and irrational (distributed) systems. The fifth chapter discusses some applications of optimization theory to the study of networks.

Book Complex Analysis and Applications

Download or read book Complex Analysis and Applications written by Alan Jeffrey and published by CRC Press. This book was released on 2005-11-10 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Analysis and Applications, Second Edition explains complex analysis for students of applied mathematics and engineering. Restructured and completely revised, this textbook first develops the theory of complex analysis, and then examines its geometrical interpretation and application to Dirichlet and Neumann boundary value problems.

Book Distributions and Analytic Functions

Download or read book Distributions and Analytic Functions written by Richard D. Carmichael and published by John Wiley & Sons. This book was released on 1989 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Value Distribution Theory and Related Topics

Download or read book Value Distribution Theory and Related Topics written by Grigor A. Barsegian and published by Springer Science & Business Media. This book was released on 2006-05-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.

Book Generalized Functions  Theory and Technique

Download or read book Generalized Functions Theory and Technique written by Kanwal and published by Academic Press. This book was released on 1983-12-01 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Functions: Theory and Technique

Book Translation Group and Particle Representations in Quantum Field Theory

Download or read book Translation Group and Particle Representations in Quantum Field Theory written by Hans-Jürgen Borchers and published by Springer Science & Business Media. This book was released on 1996-05-15 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the time I learned quantum field theory it was considered a folk theo rem that it is easy to construct field theories fulfilling either the locality or the spectrum condition. The construction of an example for the latter case is particularly easy. Take for instance an irreducible representation of the Poincare group with positive energy, and as an algebra of observables all compact operators in that representation space. This algebra of observables is even an asymptotically Abelian algebra. Since it has only a single repre sentation - except for multiples of this one - it is hardly possible to replace locality in order to obtain a theory with a reasonable physical structure. This example shows that it is not sufficient to replace locality by asymptotic Abelian-ness. The construction of a theory fulfilling locality without a pos itive energy representation was first done by Doplicher, Regge, and Singer [DRS]. However, modern investigations on the locality ideal in the algebra oftest functions, started by Alcantara and Yngvason [AY], seem to indicate that this is a general feature; this means that most of the algebras of ob servables fulfilling the locality condition will not have representations that also fulfil the spectrum condition. This discussion shows that quantum field theory becomes a subject of interest only if both conditions are satisfied at the same time.

Book Cluster Sets

    Book Details:
  • Author : Kiyoshi Noshiro
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642859283
  • Pages : 142 pages

Download or read book Cluster Sets written by Kiyoshi Noshiro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first systematic investigations of the theory of cluster sets of analytic functions, we are indebted to IVERSEN [1-3J and GROSS [1-3J about forty years ago. Subsequent important contributions before 1940 were made by SEIDEL [1-2J, DOOE [1-4J, CARTWRIGHT [1-3J and BEURLING [1]. The investigations of SEIDEL and BEURLING gave great impetus and interest to Japanese mathematicians; beginning about 1940 some contributions were made to the theory by KUNUGUI [1-3J, IRIE [IJ, TOKI [IJ, TUMURA [1-2J, KAMETANI [1-4J, TsuJI [4J and NOSHIRO [1-4J. Recently, many noteworthy advances have been made by BAGEMIHL, SEIDEL, COLLINGWOOD, CARTWRIGHT, HERVE, LEHTO, LOHWATER, MEIER, OHTSUKA and many other mathematicians. The main purpose of this small book is to give a systematic account on the theory of cluster sets. Chapter I is devoted to some definitions and preliminary discussions. In Chapter II, we treat extensions of classical results on cluster sets to the case of single-valued analytic functions in a general plane domain whose boundary contains a compact set of essential singularities of capacity zero; it is well-known that HALLSTROM [2J and TsuJI [7J extended independently Nevanlinna's theory of meromorphic functions to the case of a compact set of essential singUlarities of logarithmic capacity zero. Here, Ahlfors' theory of covering surfaces plays a funda mental role. Chapter III "is concerned with functions meromorphic in the unit circle.

Book Applied Hyperfunction Theory

Download or read book Applied Hyperfunction Theory written by Isao Imai and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized functions are now widely recognized as important mathematical tools for engineers and physicists. But they are considered to be inaccessible for non-specialists. To remedy this situation, this book gives an intelligible exposition of generalized functions based on Sato's hyperfunction, which is essentially the `boundary value of analytic functions'. An intuitive image -- hyperfunction = vortex layer -- is adopted, and only an elementary knowledge of complex function theory is assumed. The treatment is entirely self-contained. The first part of the book gives a detailed account of fundamental operations such as the four arithmetical operations applicable to hyperfunctions, namely differentiation, integration, and convolution, as well as Fourier transform. Fourier series are seen to be nothing but periodic hyperfunctions. In the second part, based on the general theory, the Hilbert transform and Poisson-Schwarz integral formula are treated and their application to integral equations is studied. A great number of formulas obtained in the course of treatment are summarized as tables in the appendix. In particular, those concerning convolution, the Hilbert transform and Fourier transform contain much new material. For mathematicians, mathematical physicists and engineers whose work involves generalized functions.

Book Value Distribution Theory

Download or read book Value Distribution Theory written by L. Sario and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this research monograph is to build up a modern value distribution theory for complex analytic mappings between abstract Riemann surfaces. All results presented herein are new in that, apart from the classical background material in the last chapter, there is no over lapping with any existing monograph on merom orphic functions. Broadly speaking the division of the book is as follows: The Introduction and Chapters I to III deal mainly with the theory of mappings of arbitrary Riemann surfaces as developed by the first named author; Chapter IV, due to Nakai, is devoted to meromorphic functions on parabolic surfaces; Chapter V contains Matsumoto's results on Picard sets; Chapter VI, pre dominantly due to the second named author, presents the so-called nonintegrated forms of the main theorems and includes some joint work by both authors. For a complete list of writers whose results have been discussed we refer to the Author Index.

Book Mathematical Methods in Physics

Download or read book Mathematical Methods in Physics written by Philippe Blanchard and published by Birkhäuser. This book was released on 2015-04-07 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three parts: - Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces. - Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schrödinger operators, as needed in quantum physics and quantum information theory – are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations. - Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle. The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire’s fundamental results and their main consequences, and bilinear functionals. Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.

Book Velocity Distribution on Wing Sections of Arbitrary Shape in Compressible Potential Flow

Download or read book Velocity Distribution on Wing Sections of Arbitrary Shape in Compressible Potential Flow written by Lipman Bers and published by . This book was released on 1950 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of computing velocity and pressure distributions along wing profiles under the assumption of the simplified density-speed relation, outlined in NACA Technical Note 1006, is extended to the case of a nonsymmetrical profile and a flow with circulation. The shape of the profile, the speed of the undisturbed flow, and a parameter determing the angle of attack may be prescribed. The problem is reduced to a nonlinear integral equation which can be solved numerical by an iteration method. A numerical example is given.