Download or read book Imprimitive Distance transitive Graphs written by Monther Rashed Furaidan and published by . This book was released on 2004 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Distance Regular Graphs written by Andries E. Brouwer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other important regular combinatorial structures are then shown to be equivalent to special families of distance-regular graphs. Other subjects of more general interest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.
Download or read book Investigations in Algebraic Theory of Combinatorial Objects written by I.A. Faradzev and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.
Download or read book Ars Combinatoria written by and published by . This book was released on 1987 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Algebraic Extremal and Metric Combinatorics 1986 written by M. Deza and published by Cambridge University Press. This book was released on 1988-08-25 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents a comprehensive overview of the present state of progress in three related areas of combinatorics. It comprises selected papers from a conference held at the University of Montreal. Topics covered in the articles include association schemes, extremal problems, combinatorial geometrics and matroids, and designs. All the papers contain new results and many are extensive surveys of particular areas of research. Particularly valuable will be Ivanov's paper on recent Soviet research in these areas. Consequently this volume will be of great attraction to all researchers in combinatorics and to research students requiring a rapid introduction to some of the open problems in the subject.
Download or read book Some Topics in Graph Theory written by Hian Poh Yap and published by Cambridge University Press. This book was released on 1986-07-17 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rapid introduction to topics in graph theory typically covered in a graduate course. The author sets out the main recent results in several areas of current research in graph theory. Topics covered include edge-colourings, symmetries of graphs, packing of graphs, and computational complexity. Professor Yap is able to lead the reader to the forefront of research and to describe some of the open problems in the field. The choice of material presented has arisen from courses given at the National University of Singapore and each chapter contains numerous examples and exercises for the reader.
Download or read book Geometry of Sporadic Groups Volume 1 Petersen and Tilde Geometries written by A. A. Ivanov and published by Cambridge University Press. This book was released on 1999-06-17 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Important monograph on finite group theory.
Download or read book Algebraic Graph Theory written by Norman Biggs and published by Cambridge University Press. This book was released on 1993 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a substantial revision of a much-quoted monograph, first published in 1974. The structure is unchanged, but the text has been clarified and the notation brought into line with current practice. A large number of 'Additional Results' are included at the end of each chapter, thereby covering most of the major advances in the last twenty years. Professor Biggs' basic aim remains to express properties of graphs in algebraic terms, then to deduce theorems about them. In the first part, he tackles the applications of linear algebra and matrix theory to the study of graphs; algebraic constructions such as adjacency matrix and the incidence matrix and their applications are discussed in depth. There follows an extensive account of the theory of chromatic polynomials, a subject which has strong links with the 'interaction models' studied in theoretical physics, and the theory of knots. The last part deals with symmetry and regularity properties. Here there are important connections with other branches of algebraic combinatorics and group theory. This new and enlarged edition this will be essential reading for a wide range of mathematicians, computer scientists and theoretical physicists.
Download or read book Sphere Packings Lattices and Groups written by John Conway and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.
Download or read book Sphere Packings Lattices and Groups written by J.H. Conway and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.
Download or read book Combinatorics written by T. P. McDonough and published by Cambridge University Press. This book was released on 1974-11-21 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a record of the papers presented to the fourth British Combinatorial Conference held in Aberystwyth in July 1973. Contributors from all over the world took part and the result is a very useful and up-to-date account of what is happening in the field of combinatorics. A section of problems illustrates some of the topics in need of further investigation.
Download or read book Introduction to Global Variational Geometry written by Demeter Krupka and published by Elsevier. This book was released on 2000-04-01 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noether's theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles- First book on the geometric foundations of Lagrange structures- New ideas on global variational functionals - Complete proofs of all theorems - Exact treatment of variational principles in field theory, inc. general relativity- Basic structures and tools: global analysis, smooth manifolds, fibred spaces
Download or read book Spectral Analysis of Growing Graphs written by Nobuaki Obata and published by Springer. This book was released on 2017-02-17 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs.This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.
Download or read book Handbook of Combinatorics written by R.L. Graham and published by Elsevier. This book was released on 1995-12-11 with total page 1283 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Topics in Algebraic Graph Theory written by Lowell W. Beineke and published by Cambridge University Press. This book was released on 2004-10-04 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph symmetry). These areas have links with other areas of mathematics, such as logic and harmonic analysis, and are increasingly being used in such areas as computer networks where symmetry is an important feature. Other books cover portions of this material, but this book is unusual in covering both of these aspects and there are no other books with such a wide scope. Peter J. Cameron, internationally recognized for his substantial contributions to the area, served as academic consultant for this volume, and the result is ten expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory, linear algebra and group theory. Each chapter concludes with an extensive list of references.
Download or read book Algebraic Combinatorics written by Eiichi Bannai and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-22 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic combinatorics is the study of combinatorial objects as an extension of the study of finite permutation groups, or, in other words, group theory without groups. In the spirit of Delsarte's theory, this book studies combinatorial objects such as graphs, codes, designs, etc. in the general framework of association schemes, providing a comprehensive overview of the theory as well as pointing out to extensions.
Download or read book Regular Graphs written by Zoran Stanić and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-04-24 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for mathematicians working with the theory of graph spectra, this (primarily theoretical) book presents relevant results considering the spectral properties of regular graphs. The book begins with a short introduction including necessary terminology and notation. The author then proceeds with basic properties, specific subclasses of regular graphs (like distance-regular graphs, strongly regular graphs, various designs or expanders) and determining particular regular graphs. Each chapter contains detailed proofs, discussions, comparisons, examples, exercises and also indicates possible applications. Finally, the author also includes some conjectures and open problems to promote further research. Contents Spectral properties Particular types of regular graph Determinations of regular graphs Expanders Distance matrix of regular graphs