EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distance Geometry

    Book Details:
  • Author : Antonio Mucherino
  • Publisher : Springer
  • Release : 2015-01-28
  • ISBN : 9781489985781
  • Pages : 0 pages

Download or read book Distance Geometry written by Antonio Mucherino and published by Springer. This book was released on 2015-01-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.

Book Euclidean Distance Geometry

Download or read book Euclidean Distance Geometry written by Leo Liberti and published by Springer. This book was released on 2017-09-20 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.

Book An Introduction to Distance Geometry applied to Molecular Geometry

Download or read book An Introduction to Distance Geometry applied to Molecular Geometry written by Carlile Lavor and published by Springer. This book was released on 2017-07-12 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a pedagogical presentation aimed at advanced undergraduate students, beginning graduate students and professionals who are looking for an introductory text to the field of Distance Geometry, and some of its applications. This versions profits from feedback acquired at undergraduate/graduate courses in seminars and a number of workshops.

Book Theory and Applications of Distance Geometry

Download or read book Theory and Applications of Distance Geometry written by Leonard Mascot Blumenthal and published by Chelsea Publishing Company, Incorporated. This book was released on 1970 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Distance Geometry

    Book Details:
  • Author : Antonio Mucherino
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-22
  • ISBN : 1461451280
  • Pages : 436 pages

Download or read book Distance Geometry written by Antonio Mucherino and published by Springer Science & Business Media. This book was released on 2012-12-22 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.

Book Convex Optimization   Euclidean Distance Geometry

Download or read book Convex Optimization Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.

Book Distance Geometry and Molecular Conformation

Download or read book Distance Geometry and Molecular Conformation written by G. M. Crippen and published by John Wiley & Sons. This book was released on 1988 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Automated Deduction in Geometry

Download or read book Automated Deduction in Geometry written by Hoon Hong and published by Springer. This book was released on 2006-02-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the thoroughly refereed post-proceedings of the 5th International Workshop on Automated Deduction in Geometry, ADG 2004, held at Gainesville, FL, USA in September 2004. The 12 revised full papers presented aurvey current issues theoretical and methodological topics as well as applications thereof - in particular automated geometry theorem proving, automated geometry problem solving, problems of dynamic geometry, and an object-oriented language for geometric objects.

Book Non Euclidean Laguerre Geometry and Incircular Nets

Download or read book Non Euclidean Laguerre Geometry and Incircular Nets written by Alexander I. Bobenko and published by Springer Nature. This book was released on 2021-10-29 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets. Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.

Book Digital Geometry

    Book Details:
  • Author : Reinhard Klette
  • Publisher : Elsevier
  • Release : 2004-09-04
  • ISBN : 0080477267
  • Pages : 675 pages

Download or read book Digital Geometry written by Reinhard Klette and published by Elsevier. This book was released on 2004-09-04 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital geometry is about deriving geometric information from digital pictures. The field emerged from its mathematical roots some forty-years ago through work in computer-based imaging, and it is used today in many fields, such as digital image processing and analysis (with applications in medical imaging, pattern recognition, and robotics) and of course computer graphics. Digital Geometry is the first book to detail the concepts, algorithms, and practices of the discipline. This comphrehensive text and reference provides an introduction to the mathematical foundations of digital geometry, some of which date back to ancient times, and also discusses the key processes involved, such as geometric algorithms as well as operations on pictures. *A comprehensive text and reference written by pioneers in digital geometry, image processing and analysis, and computer vision*Provides a collection of state-of-the-art algorithms for a wide variety of geometrical picture analysis tasks, including extracting data from digital images and making geometric measurements on the data*Includes exercises, examples, and references to related or more advanced work

Book Discrete Geometry and Algebraic Combinatorics

Download or read book Discrete Geometry and Algebraic Combinatorics written by Alexander Barg and published by American Mathematical Society. This book was released on 2014-08-28 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.

Book Discrete Geometry for Computer Imagery

Download or read book Discrete Geometry for Computer Imagery written by Nicolas Normand and published by Springer. This book was released on 2016-04-08 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 19th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2016, held in Nantes, France, in April 2016. The 32 revised full papers presented together with 2 invited talks were carefully selected from 51 submissions. The papers are organized in topical sections on combinatorial tools; discretization; discrete tomography; discrete and combinatorial topology; shape descriptors; models for discrete geometry; circle drawing; morphological analysis; geometric transforms; and discrete shape representation, recognition and analysis.

Book Geometry and Interpolation of Curves and Surfaces

Download or read book Geometry and Interpolation of Curves and Surfaces written by Robin J. Y. McLeod and published by Cambridge University Press. This book was released on 1998-07-13 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text takes a practical, step-by-step approach to algebraic curves and surface interpolation motivated by the understanding of the many practical applications in engineering analysis, approximation, and curve-plotting problems. Because of its usefulness for computing, the algebraic approach is the main theme, but a brief discussion of the synthetic approach is also presented as a way of gaining additional insight before proceeding with the algebraic manipulation. Professionals, students, and researchers in applied mathematics, solid modeling, graphics, robotics, and engineering design and analysis will find this a useful reference.

Book An Essay on the Foundations of Geometry

Download or read book An Essay on the Foundations of Geometry written by Bertrand Russell and published by . This book was released on 1897 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Information Geometry

Download or read book Information Geometry written by Geert Verdoolaege and published by MDPI. This book was released on 2019-04-04 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.

Book 3D QSAR in Drug Design

    Book Details:
  • Author : Hugo Kubinyi
  • Publisher : Springer Science & Business Media
  • Release : 1998-04-30
  • ISBN : 0792347900
  • Pages : 413 pages

Download or read book 3D QSAR in Drug Design written by Hugo Kubinyi and published by Springer Science & Business Media. This book was released on 1998-04-30 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volumes 2 and 3 of the 3D QSAR in Drug Design series aim to review the progress being made in CoMFA and other 3D QSAR approaches since the publication of the highly successful first volume about four years ago. Volume 2 (Ligand-Protein Interactions and Molecular Similarity) divides into three sections dealing with Ligand-Protein Interactions, Quantum Chemical Models and Molecular Dynamics Simulations, and Pharmacophore Modelling and Molecular Similarity, respectively. Volume 3 (Recent Advances) is also divided into three sections, namely 3D QSAR Methodology: CoMFA and Related Approaches, Receptor Models and Other 3D QSAR Approaches, and 3D QSAR Applications. More than seventy distinguished scientists have contributed nearly forty reviews of their work and related research to these two volumes which are of outstanding quality and timeliness. These works present an up-to-date coverage of the latest developments in all fields of 3D QSAR.

Book The Geometry of Musical Rhythm

Download or read book The Geometry of Musical Rhythm written by Godfried T. Toussaint and published by CRC Press. This book was released on 2013-01-11 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometry of Musical Rhythm: What Makes a "Good" Rhythm Good? is the first book to provide a systematic and accessible computational geometric analysis of the musical rhythms of the world. It explains how the study of the mathematical properties of musical rhythm generates common mathematical problems that arise in a variety of seemingly disparate fields. For the music community, the book also introduces the distance approach to phylogenetic analysis and illustrates its application to the study of musical rhythm. Accessible to both academics and musicians, the text requires a minimal set of prerequisites. Emphasizing a visual geometric treatment of musical rhythm and its underlying structures, the author—an eminent computer scientist and music theory researcher—presents new symbolic geometric approaches and often compares them to existing methods. He shows how distance geometry and phylogenetic analysis can be used in comparative musicology, ethnomusicology, and evolutionary musicology research. The book also strengthens the bridge between these disciplines and mathematical music theory. Many concepts are illustrated with examples using a group of six distinguished rhythms that feature prominently in world music, including the clave son. Exploring the mathematical properties of good rhythms, this book offers an original computational geometric approach for analyzing musical rhythm and its underlying structures. With numerous figures to complement the explanations, it is suitable for a wide audience, from musicians, composers, and electronic music programmers to music theorists and psychologists to computer scientists and mathematicians. It can also be used in an undergraduate course on music technology, music and computers, or music and mathematics.