Download or read book Introduction to Coding Theory written by Juergen Bierbrauer and published by Chapman & Hall/CRC. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.
Download or read book Coding in Python and Elements of Discrete Mathematics written by Maria Litvin and published by . This book was released on 2019-06-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals of Information Theory and Coding Design written by Roberto Togneri and published by CRC Press. This book was released on 2003-01-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Books on information theory and coding have proliferated over the last few years, but few succeed in covering the fundamentals without losing students in mathematical abstraction. Even fewer build the essential theoretical framework when presenting algorithms and implementation details of modern coding systems. Without abandoning the theoret
Download or read book Discrete Mathematics written by Sriraman Sridharan and published by CRC Press. This book was released on 2019-07-30 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conveying ideas in a user-friendly style, this book has been designed for a course in Applied Algebra. The book covers graph algorithms, basic algebraic structures, coding theory and cryptography. It will be most suited for senior undergraduates and beginning graduate students in mathematics and computer science as also to individuals who want to have a knowledge of the below-mentioned topics. Provides a complete discussion on several graph algorithms such as Prims algorithm and Kruskals algorithm for sending a minimum cost spanning tree in a weighted graph, Dijkstras single source shortest path algorithm, Floyds algorithm, Warshalls algorithm, Kuhn-Munkres Algorithm. In addition to DFS and BFS search, several applications of DFS and BFS are also discussed. Presents a good introduction to the basic algebraic structures, namely, matrices, groups, rings, fields including finite fields as also a discussion on vector spaces and linear equations and their solutions. Provides an introduction to linear codes including cyclic codes. Presents a description of private key cryptosystems as also a discussion on public key cryptosystems such as RSA, ElGamal and Miller-Rabin. Finally, the Agrawal-KayalSaxena algorithm (AKS Algorithm) for testing if a given positive integer is prime or not in polynomial time is presented- the first time in a textbook. Two distinguished features of the book are: Illustrative examples have been presented throughout the book to make the readers appreciate the concepts described. Answers to all even-numbered exercises in all the chapters are given.
Download or read book Discrete Mathematics for Computer Science written by Gary Haggard and published by Cengage Learning. This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.
Download or read book Computer Mathematics for Programmers written by Darrell H. Abney and published by Elsevier. This book was released on 2014-05-09 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer. The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer programming. Subsequent chapters focuses on specific mathematical topics such as algebra, sets, logic, Boolean algebra, matrices, graphing and linear programming, and statistics. Students of computer programming will find the text very useful.
Download or read book Introductory Discrete Mathematics written by V. K . Balakrishnan and published by Courier Corporation. This book was released on 2012-04-30 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.
Download or read book Applied Algebra written by Darel W. Hardy and published by CRC Press. This book was released on 2009-02-17 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition Downloadable resources containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that reviews prerequisite topics in algebra and number theory Double the number of exercises Instead of a general study on finite groups, the book considers finite groups of permutations and develops just enough of the theory of finite fields to facilitate construction of the fields used for error-control codes and the Advanced Encryption Standard. It also deals with integers and polynomials. Explaining the mathematics as needed, this text thoroughly explores how mathematical techniques can be used to solve practical problems. About the AuthorsDarel W. Hardy is Professor Emeritus in the Department of Mathematics at Colorado State University. His research interests include applied algebra and semigroups. Fred Richman is a professor in the Department of Mathematical Sciences at Florida Atlantic University. His research interests include Abelian group theory and constructive mathematics. Carol L. Walker is Associate Dean Emeritus in the Department of Mathematical Sciences at New Mexico State University. Her research interests include Abelian group theory, applications of homological algebra and category theory, and the mathematics of fuzzy sets and fuzzy logic.
Download or read book Discrete Mathematics written by László Lovász and published by Springer Science & Business Media. This book was released on 2006-05-10 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
Download or read book Street Fighting Mathematics written by Sanjoy Mahajan and published by MIT Press. This book was released on 2010-03-05 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Download or read book A First Course in Coding Theory written by Raymond Hill and published by Oxford University Press. This book was released on 1986 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.
Download or read book A Comprehensive Treatment of q Calculus written by Thomas Ernst and published by Springer Science & Business Media. This book was released on 2012-09-08 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few.
Download or read book Foundations of Discrete Mathematics with Algorithms and Programming written by Sriraman Sridharan and published by Chapman & Hall/CRC. This book was released on 2019 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Mathematics has permeated the whole of mathematics so much so it has now come to be taught even at the high school level. This book presents the basics of Discrete Mathematics and its applications to day-to-day problems in several areas. This book is intended for undergraduate students of Computer Science, Mathematics and Engineering. A number of examples have been given to enhance the understanding of concepts. The programming languages used are Pascal and C.
Download or read book Discrete Mathematics with Proof written by Eric Gossett and published by John Wiley & Sons. This book was released on 2009-06-22 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.
Download or read book Information Theory written by Imre Csiszár and published by Elsevier. This book was released on 2014-07-10 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.
Download or read book Information Theory and Coding by Example written by Mark Kelbert and published by Cambridge University Press. This book was released on 2013-09-12 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fundamental monograph introduces both the probabilistic and algebraic aspects of information theory and coding. It has evolved from the authors' years of experience teaching at the undergraduate level, including several Cambridge Maths Tripos courses. The book provides relevant background material, a wide range of worked examples and clear solutions to problems from real exam papers. It is a valuable teaching aid for undergraduate and graduate students, or for researchers and engineers who want to grasp the basic principles.
Download or read book Problems and Exercises in Discrete Mathematics written by G.P. Gavrilov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.