EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Discrete Dynamical Models

Download or read book Discrete Dynamical Models written by Ernesto Salinelli and published by Springer. This book was released on 2014-06-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.

Book Discrete Dynamical Systems

Download or read book Discrete Dynamical Systems written by Oded Galor and published by Springer Science & Business Media. This book was released on 2007-05-17 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to discrete dynamical systems – a framework of analysis that is commonly used in the ?elds of biology, demography, ecology, economics, engineering, ?nance, and physics. The book characterizes the fundamental factors that govern the quantitative and qualitative trajectories of a variety of deterministic, discrete dynamical systems, providing solution methods for systems that can be solved analytically and methods of qualitative analysis for those systems that do not permit or necessitate an explicit solution. The analysis focuses initially on the characterization of the factors that govern the evolution of state variables in the elementary context of one-dimensional, ?rst-order, linear, autonomous systems. The f- damental insights about the forces that a?ect the evolution of these - ementary systems are subsequently generalized, and the determinants of the trajectories of multi-dimensional, nonlinear, higher-order, non- 1 autonomous dynamical systems are established. Chapter 1 focuses on the analysis of the evolution of state variables in one-dimensional, ?rst-order, autonomous systems. It introduces a method of solution for these systems, and it characterizes the traj- tory of a state variable, in relation to a steady-state equilibrium of the system, examining the local and global (asymptotic) stability of this steady-state equilibrium. The ?rst part of the chapter characterizes the factors that determine the existence, uniqueness and stability of a steady-state equilibrium in the elementary context of one-dimensional, ?rst-order, linear autonomous systems.

Book Discovering Discrete Dynamical Systems

Download or read book Discovering Discrete Dynamical Systems written by Aimee Johnson and published by American Mathematical Soc.. This book was released on 2017-12-31 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovering Discrete Dynamical Systems is a mathematics textbook designed for use in a student-led, inquiry-based course for advanced mathematics majors. Fourteen modules each with an opening exploration, a short exposition and related exercises, and a concluding project guide students to self-discovery on topics such as fixed points and their classifications, chaos and fractals, Julia and Mandelbrot sets in the complex plane, and symbolic dynamics. Topics have been carefully chosen as a means for developing student persistence and skill in exploration, conjecture, and generalization while at the same time providing a coherent introduction to the fundamentals of discrete dynamical systems. This book is written for undergraduate students with the prerequisites for a first analysis course, and it can easily be used by any faculty member in a mathematics department, regardless of area of expertise. Each module starts with an exploration in which the students are asked an open-ended question. This allows the students to make discoveries which lead them to formulate the questions that will be addressed in the exposition and exercises of the module. The exposition is brief and has been written with the intent that a student who has taken, or is ready to take, a course in analysis can read the material independently. The exposition concludes with exercises which have been designed to both illustrate and explore in more depth the ideas covered in the exposition. Each module concludes with a project in which students bring the ideas from the module to bear on a more challenging or in-depth problem. A section entitled "To the Instructor" includes suggestions on how to structure a course in order to realize the inquiry-based intent of the book. The book has also been used successfully as the basis for an independent study course and as a supplementary text for an analysis course with traditional content.

Book A First Course in Discrete Dynamical Systems

Download or read book A First Course in Discrete Dynamical Systems written by Richard A. Holmgren and published by Springer Science & Business Media. This book was released on 2012-09-05 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.

Book Discrete Dynamical Systems

Download or read book Discrete Dynamical Systems written by James T. Sandefur and published by Oxford University Press, USA. This book was released on 1990 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an elementary introduction to the world of dynamical systems and Chaos. Dynamical systems provide a mathematical means of modeling and analysing aspects of the changing world around us. The aim of this ground-breaking new text is to introduce the reader both to the wide variety of techniques used to study dynamical systems and to their many applications. In particular, investigation of dynamical systems leads to the important concepts of stability, strange attractors, Chaos, and fractals.

Book Discrete Dynamical Systems and Difference Equations with Mathematica

Download or read book Discrete Dynamical Systems and Difference Equations with Mathematica written by Mustafa R.S. Kulenovic and published by CRC Press. This book was released on 2002-02-27 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba

Book Formal Methods for Discrete Time Dynamical Systems

Download or read book Formal Methods for Discrete Time Dynamical Systems written by Calin Belta and published by Springer. This book was released on 2017-03-08 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.

Book An Introduction to Dynamical Systems

Download or read book An Introduction to Dynamical Systems written by Rex Clark Robinson and published by American Mathematical Soc.. This book was released on 2012 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

Book Positive Dynamical Systems in Discrete Time

Download or read book Positive Dynamical Systems in Discrete Time written by Ulrich Krause and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-03-10 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)

Book Chaos in Discrete Dynamical Systems

Download or read book Chaos in Discrete Dynamical Systems written by Ralph Abraham and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The materials in the book and on the accompanying disc are not solely developed with only the researcher and professional in mind, but also with consideration for the student: most of this material has been class-tested by the authors. The book is packed with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-colour animations tied directly to the subject matter of the book itself. The cross-platform CD also contains the program ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided to allow readers to work directly with the code from which the graphics in the book were taken.

Book Progress on Difference Equations and Discrete Dynamical Systems

Download or read book Progress on Difference Equations and Discrete Dynamical Systems written by Steve Baigent and published by Springer Nature. This book was released on 2021-01-04 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.

Book Introduction to Discrete Dynamical Systems and Chaos

Download or read book Introduction to Discrete Dynamical Systems and Chaos written by Mario Martelli and published by John Wiley & Sons. This book was released on 2011-11-01 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field.

Book An Introduction to Sequential Dynamical Systems

Download or read book An Introduction to Sequential Dynamical Systems written by Henning Mortveit and published by Springer Science & Business Media. This book was released on 2007-11-27 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text to the class of Sequential Dynamical Systems (SDS) is the first textbook on this timely subject. Driven by numerous examples and thought-provoking problems throughout, the presentation offers good foundational material on finite discrete dynamical systems, which then leads systematically to an introduction of SDS. From a broad range of topics on structure theory - equivalence, fixed points, invertibility and other phase space properties - thereafter SDS relations to graph theory, classical dynamical systems as well as SDS applications in computer science are explored. This is a versatile interdisciplinary textbook.

Book Dynamical Models in Biology

Download or read book Dynamical Models in Biology written by Miklós Farkas and published by Academic Press. This book was released on 2001-06-15 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation. Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists, agricultural engineers, and environmentalists. Key Topics Include: - Chaotic dynamics of populations - The spread of sexually transmitted diseases - Problems of the origin of life - Models of immunology - Formation of animal hide patterns - The intuitive meaning of mathematical formulae explained with many figures - Applying new mathematical results in modeling biological phenomena Miklos Farkas is a professor at Budapest University of Technology where he has researched and instructed mathematics for over thirty years. He has taught at universities in the former Soviet Union, Canada, Australia, Venezuela, Nigeria, India, and Columbia. Prof. Farkas received the 1999 Bolyai Award of the Hungarian Academy of Science and the 2001 Albert Szentgyorgyi Award of the Hungarian Ministry of Education. - A 'down-to-earth' introduction to the growing field of modern mathematical biology - Also includes appendices which provide background material that goes beyond advanced calculus and linear algebra

Book Differential Dynamical Systems  Revised Edition

Download or read book Differential Dynamical Systems Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Book An Introduction to Hybrid Dynamical Systems

Download or read book An Introduction to Hybrid Dynamical Systems written by Arjan J. van der Schaft and published by Springer. This book was released on 2007-10-03 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.

Book Discrete Dynamical Systems  Bifurcations and Chaos in Economics

Download or read book Discrete Dynamical Systems Bifurcations and Chaos in Economics written by Wei-Bin Zhang and published by Elsevier. This book was released on 2006-01-05 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics. - A unique book concentrated on theory of discrete dynamical systems and its traditional as well as advanced applications to economics - Mathematical definitions and theorems are introduced in a systematic and easily accessible way - Examples are from almost all fields of economics; technically proceeding from basic to advanced topics - Lively illustrations with numerous figures - Numerous simulation to see paths of economic dynamics - Comprehensive treatment of the subject with a comprehensive and easily accessible approach