EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Discovery of Biomolecular Structure function Mechanisms with Computational Frameworks at the Nanoscale

Download or read book Discovery of Biomolecular Structure function Mechanisms with Computational Frameworks at the Nanoscale written by Sarah Alamdari and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomolecular function is closely linked to the events that occur at the molecular level, which often takes place in a complex biological environment (i.e., at a complex interface). Approaches which can correlate the massive design space of biophysical and biochemical features at the nanoscale with their expressed macromolecular behavior are of fundamental interest to the field of bioinspired design. While experimental/AI approaches have successfully been applied to characterize the behavior of solution-phase proteins, there is a lack of methods which can probe interfacial phenomena of biomolecules at the same level of resolution. Increases in compute power point to simulation approaches as one avenue for advancing the frontier of biomolecular structure/function exploration at interfaces. In this dissertation, physics-based simulation frameworks were developed and applied to model interfacial peptide, protein, and peptoid systems. As a result, this work demonstrates the capability of computational molecular models to study different biological phenomena with high accuracy, providing insight to the behavior of these complex biomolecules within the areas of biomineralization, self-assembly, and enzyme catalysis.

Book Discovering Biomolecular Mechanisms with Computational Biology

Download or read book Discovering Biomolecular Mechanisms with Computational Biology written by Frank Eisenhaber and published by Springer Science & Business Media. This book was released on 2007-03-20 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This anthology presents critical reviews of methods and high-impact applications in computational biology that lead to results that non-bioinformaticians must also know to design efficient experimental research plans. Discovering Biomolecular Mechanisms with Computational Biology explores the methodology of translating sequence strings into biological knowledge and considers exemplary groundbreaking results such as unexpected enzyme discoveries. This book also summarizes non-trivial theoretical predictions for regulatory and metabolic networks that have received experimental confirmation.

Book Discovering Biomolecular Mechanisms with Computational Biology

Download or read book Discovering Biomolecular Mechanisms with Computational Biology written by Frank Eisenhaber and published by Springer. This book was released on 2006-06-13 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This anthology presents critical reviews of methods and high-impact applications in computational biology that lead to results that non-bioinformaticians must also know to design efficient experimental research plans. Discovering Biomolecular Mechanisms with Computational Biology explores the methodology of translating sequence strings into biological knowledge and considers exemplary groundbreaking results such as unexpected enzyme discoveries. This book also summarizes non-trivial theoretical predictions for regulatory and metabolic networks that have received experimental confirmation.

Book Simulations in Nanobiotechnology

Download or read book Simulations in Nanobiotechnology written by Kilho Eom and published by CRC Press. This book was released on 2011-10-19 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until the late 20th century, computational studies of biomolecules and nanomaterials had considered the two subjects separately. A thorough presentation of state-of-the-art simulations for studying the nanoscale behavior of materials, Simulations in Nanobiotechnology discusses computational simulations of biomolecules and nanomaterials together. The book gives readers insight into not only the fundamentals of simulation-based characterizations in nanobiotechnology, but also in how to approach new and interesting problems in nanobiotechnology using basic theoretical and computational frameworks. Presenting the simulation-based nanoscale characterizations in biological science, Part 1: Describes recent efforts in MD simulation-based characterization and CG modeling of DNA and protein transport dynamics in the nanopore and nanochannel Presents recent advances made in continuum mechanics-based modeling of membrane proteins Summarizes theoretical frameworks along with atomistic simulations in single-molecule mechanics Provides the computational simulation-based mechanical characterization of protein materials Discussing advances in modeling techniques and their applications, Part 2: Describes advances in nature-inspired material design; atomistic simulation-based characterization of nanoparticles’ optical properties; and nanoparticle-based applications in therapeutics Overviews of the recent advances made in experiment and simulation-based characterizations of nanoscale adhesive properties Suggests theoretical frameworks with experimental efforts in the development of nanoresonators for future nanoscale device designs Delineates advances in theoretical and computational methods for understanding the mechanical behavior of a graphene monolayer The development of experimental apparatuses has paved the way to observing physics at the nanoscale and opened a new avenue in the fundamental understanding of the physics of various objects such as biological materials and nanomaterials. With expert contributors from around the world, this book addresses topics such as the molecular dynamics of protein translocation, coarse-grained modeling of CNT-DNA interactions, multi-scale modeling of nanowire resonator sensors, and the molecular dynamics simulation of protein mechanics. It demonstrates the broad application of models and simulations that require the use of principles from multiple academic disciplines.

Book Inspired by Biology

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2008-06-17
  • ISBN : 0309134293
  • Pages : 170 pages

Download or read book Inspired by Biology written by National Research Council and published by National Academies Press. This book was released on 2008-06-17 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists have long desired to create synthetic systems that function with the precision and efficiency of biological systems. Using new techniques, researchers are now uncovering principles that could allow the creation of synthetic materials that can perform tasks as precise as biological systems. To assess the current work and future promise of the biology-materials science intersection, the Department of Energy and the National Science Foundation asked the NRC to identify the most compelling questions and opportunities at this interface, suggest strategies to address them, and consider connections with national priorities such as healthcare and economic growth. This book presents a discussion of principles governing biomaterial design, a description of advanced materials for selected functions such as energy and national security, an assessment of biomolecular materials research tools, and an examination of infrastructure and resources for bridging biological and materials science.

Book Structural DNA Nanotechnology

Download or read book Structural DNA Nanotechnology written by Nadrian C. Seeman and published by Cambridge University Press. This book was released on 2015 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the founder of the field, this is a comprehensive and accessible introduction to structural DNA nanotechnology.

Book Computational Structural Biology

Download or read book Computational Structural Biology written by Torsten Schwede and published by World Scientific. This book was released on 2008 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive introduction to Landau-Lifshitz equations and Landau-Lifshitz-Maxwell equations, beginning with the work by Yulin Zhou and Boling Guo in the early 1980s and including most of the work done by this Chinese group led by Zhou and Guo since. The book focuses on aspects such as the existence of weak solutions in multi dimensions, existence and uniqueness of smooth solutions in one dimension, relations with harmonic map heat flows, partial regularity and long time behaviors. The book is a valuable reference book for those who are interested in partial differential equations, geometric analysis and mathematical physics. It may also be used as an advanced textbook by graduate students in these fields.

Book Protein Self Assembly

    Book Details:
  • Author : Jennifer J. McManus
  • Publisher : Humana
  • Release : 2020-08-08
  • ISBN : 9781493996803
  • Pages : 266 pages

Download or read book Protein Self Assembly written by Jennifer J. McManus and published by Humana. This book was released on 2020-08-08 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Book Biomolecular Structure and Dynamics

Download or read book Biomolecular Structure and Dynamics written by G. Vergoten and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomolecular Structure and Dynamics describes recent fundamental advances in the experimental and theoretical study of molecular dynamics and stochastic dynamic simulations, X-ray crystallography and NMR of biomolecules, the structure of proteins and its prediction, time resolved Fourier transform IR spectroscopy of biomolecules, the computation of free energy, applications of vibrational CD of nucleic acids, and solid state NMR. Further presentations include recent advances in UV resonance Raman spectroscopy of biomolecules, semiempirical MO methods, empirical force fields, quantitative studies of the structure of proteins in water by Fourier transform IR, and density functional theory. Metal-ligand interactions, DFT treatment of organometallic and biological systems, and simulation vs. X-ray and far IR experiments are also discussed in some detail. The book provides a broad perspective of the current theoretical aspects and recent experimental findings in the field of biomolecular dynamics, revealing future research trends, especially in areas where theoreticians and experimentalists could fruitfully collaborate.

Book Molecular Modeling and Simulation

Download or read book Molecular Modeling and Simulation written by Tamar Schlick and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text

Book Design  Principle and Application of Self Assembled Nanobiomaterials in Biology and Medicine

Download or read book Design Principle and Application of Self Assembled Nanobiomaterials in Biology and Medicine written by Alok Pandya and published by Academic Press. This book was released on 2022-08-04 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine discusses recent advances in science and technology using nanoscale units that show the novel concept of combining nanotechnology with various research disciplines within both the biomedical and medicine fields. Self-assembly of molecules, macromolecules, and polymers is a fascinating strategy for the construction of various desired nanofabrication in chemistry, biology, and medicine for advanced applications. It has a number of advantages: (1) It is involving atomic-level modification of molecular structure using bond formation advanced techniques of synthetic chemistry. (2) It draws from the enormous wealth of examples in biology for the development of complex, functional structures. (3) It can incorporate biological structures directly as components in the final systems. (4) It requires that the target self-assembled structures be thermodynamically most stable with relatively defect-free and self-healing. In this book, we cover the various emerging self-assembled nanostructured objects including molecular machines, nano-cars molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nano-flakes, nano-cubes, nano-disks, nanorings, DNA origami, transmembrane channels, and vesicles. These self-assembled materials are used for sensing, drug delivery, molecular recognition, tissue engineering energy generation, and molecular tuning. Provides a basic understanding of how to design, and implement various self-assembled nanobiomaterials Covers principles implemented in the constructions of novel nanostructured materials Offers many applications of self-assemblies in fluorescent biological labels, drug and gene delivery, bio-detection of pathogens, detection of proteins, probing of DNA structure, tissue engineering, and many more

Book Encyclopedia of Parallel Computing

Download or read book Encyclopedia of Parallel Computing written by David Padua and published by Springer Science & Business Media. This book was released on 2011-09-08 with total page 2211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing

Book Biomolecular Feedback Systems

    Book Details:
  • Author : Domitilla Del Vecchio
  • Publisher : Princeton University Press
  • Release : 2014-10-26
  • ISBN : 1400850509
  • Pages : 287 pages

Download or read book Biomolecular Feedback Systems written by Domitilla Del Vecchio and published by Princeton University Press. This book was released on 2014-10-26 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu

Book Nanoscale Assembly

Download or read book Nanoscale Assembly written by Wilhelm T.S. Huck and published by Springer Science & Business Media. This book was released on 2006-07-11 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.

Book Biomolecular EPR Spectroscopy

Download or read book Biomolecular EPR Spectroscopy written by Wilfred Raymond Hagen and published by CRC Press. This book was released on 2008-12-22 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction t

Book Bio Nanoparticles

    Book Details:
  • Author : Om V. Singh
  • Publisher : John Wiley & Sons
  • Release : 2015-06-22
  • ISBN : 1118677684
  • Pages : 395 pages

Download or read book Bio Nanoparticles written by Om V. Singh and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoparticles are the building blocks for nanotechnology; they are better built, long lasting, cleaner, safer, and smarter products for use across industries, including communications, medicine, transportation, agriculture and other industries. Controlled size, shape, composition, crystallinity, and structure-dependent properties govern the unique properties of nanotechnology. Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications explores both the basics of and advancements in nanoparticle biosynthesis. The text introduces the reader to a variety of microorganisms able to synthesize nanoparticles, provides an overview of the methodologies applied to biosynthesize nanoparticles for medical and commercial use, and gives an overview of regulations governing their use. Authored by leaders in the field, Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications bridges the gap between biology and technology, and is an invaluable resource for students and researchers alike.

Book Three Dimensional Electron Microscopy

Download or read book Three Dimensional Electron Microscopy written by and published by Academic Press. This book was released on 2019-07-18 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-Dimensional Electron Microscopy, Volume 152 in the Methods in Cell Biology series, highlights new advances in the field, with this new volume presenting interesting chapters focusing on FIB-SEM of mouse nervous tissue: fast and slow sample preparation, Serial-section electron microscopy using ATUM - Automated Tape collecting Ultra-Microtome, Software for automated acquisition of electron tomography tilt series, Scanning electron tomography of biological samples embedded in plastic, Cryo-STEM tomography for Biology, CryoCARE: Content-aware denoising of cryo-EM images and tomograms using artificial neural networks, Expedited large-volume 3-D SEM workflows for comparative vertebrate microanatomical imaging, and many other interesting topics. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Cell Biology series Includes the latest information on the Three-Dimensional Electron Microscopy technique