EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Direct Methanol Fuel Cell Technology

Download or read book Direct Methanol Fuel Cell Technology written by Kingshuk Dutta and published by Elsevier. This book was released on 2020-02-25 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects

Book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Download or read book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology written by Christoph Hartnig and published by Elsevier. This book was released on 2012-02-20 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods

Book Electrocatalysis of Direct Methanol Fuel Cells

Download or read book Electrocatalysis of Direct Methanol Fuel Cells written by Jiujun Zhang and published by John Wiley & Sons. This book was released on 2009-10-26 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture of the current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.

Book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Download or read book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology written by C Hartnig and published by Woodhead Publishing. This book was released on 2012-04-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques. Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance

Book Direct Methanol Fuel Cells

Download or read book Direct Methanol Fuel Cells written by Antonio Salvatore Aricò and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an analysis of materials issues, status of technologies and potential applications of direct methanol fuel cells. The principle of operation of direct methanol fuel cells and the status of knowledge in the basic research areas are presented. The technology of direct methanol fuel cells is discussed in this book with particular regard to fabrication methodologies for the manufacturing of catalysts, electrolytes membrane-electrode assemblies, stack hardware and system design.

Book Mini Micro Fuel Cells

    Book Details:
  • Author : S. Kakaç
  • Publisher : Springer Science & Business Media
  • Release : 2008-04-10
  • ISBN : 1402082959
  • Pages : 436 pages

Download or read book Mini Micro Fuel Cells written by S. Kakaç and published by Springer Science & Business Media. This book was released on 2008-04-10 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains an archival record of the NATO Advanced Institute on Mini – Micro Fuel Cells – Fundamental and Applications held in Çesme – Izmir, Turkey, July 22–August 3, 2007. The ASIs are intended to be a high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters on Mini- Micro Fuel Cells with fundamentals and applications. In recent years, fu- cell development, modeling and performance analysis has received much attention due to their potential for distributed power which is a critical issue for energy security and the environmental protection. Small fuel cells for portable applications are important for the security. The portable devices (many electronic and wireless) operated by fuel cells for providing all-day power, are very valuable for the security, for defense and in the war against terrorism. Many companies in NATO and non-NATO countries have concentrated to promote the fuel cell industry. Many universities with industrial partners committed to the idea of working together to develop fuel cells. As tech- logy advanced in the 1980s and beyond, many government organizations joined in spending money on fuel-cell research. In recent years, interest in using fuel cells to power portable electronic devices and other small equipment (cell phones, mobile phones, lab-tops, they are used as micro power source in biological applications) has increased partly due to the promise of fuel cells having higher energy density.

Book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Download or read book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology written by Christoph Hartnig and published by Elsevier. This book was released on 2012-03-19 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and reviews advanced transport simulation approaches, degradation modelling and experimental monitoring techniques

Book Direct Liquid Fuel Cells

    Book Details:
  • Author : Ramiz Gültekin Akay
  • Publisher : Academic Press
  • Release : 2020-09-28
  • ISBN : 0128186240
  • Pages : 328 pages

Download or read book Direct Liquid Fuel Cells written by Ramiz Gültekin Akay and published by Academic Press. This book was released on 2020-09-28 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Liquid Fuel Cells is a comprehensive overview of the fundamentals and specificities of the use of methanol, ethanol, glycerol, formic acid and formate, dimethyl ether, borohydride, hydrazine and other promising liquid fuels in fuel cells. Each chapter covers a different liquid fuel-based fuel cell such as: Anode catalysts of direct methanol fuel cells (DMFCs), future system designs and future trends for direct ethanol fuel cells (DEFCs), development of catalysts for direct glycerol fuel cells (DGFCs), the mechanisms of the reactions taking place at the anode and cathode electrodes, and the reported anode catalysts for direct formic acid fuel cell (DFAFC) and direct formate fuel cell (DFFC), characteristics of direct dimethyl ether fuel cell (DDMEFC), including its electrochemical and operating systems and design, the developments in direct borohydride fuel cells, the development of catalysts for direct hydrazine fuel cells (DHFCs), and also the uncommonly used liquids that have a potential for fuel cell applications including 2-propanol, ethylene glycol, ascorbic acid and ascorbate studied in the literature as well as utilization of some blended fuels. In each part, the most recent literature is reviewed and the state of the art is presented. It also includes examples of practical problems with solutions and a summarized comparison of performance, advantages, and limitations of each type of fuel cell discussed. Direct Liquid Fuel Cells is not a typical textbook but rather designed as a reference book of which any level of students (undergraduate or graduate), instructors, field specialists, industry and general audience, who benefit from current and complete understanding of the many aspects involved in the development and operation of these types of fuel cells, could make use of any chapter when necessary. Presents information on different types of direct liquid fuel cells. Explores information under each section, for specific fuel-based fuel cells in more detail in terms of the materials used. Covers three main sections: direct alcohol, organic fuel-based and inorganic fuel-based fuel cells

Book Fuel Cell Engineering

Download or read book Fuel Cell Engineering written by and published by Academic Press. This book was released on 2012-08-14 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. Updates and informs the reader on the latest research findings using original reviews Written by leading industry experts and scholars Reviews and analyzes developments in the field

Book Fuel Cell Technology

Download or read book Fuel Cell Technology written by Nigel Sammes and published by Springer Science & Business Media. This book was released on 2006-05-14 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are a very promising technology for the clean and efficient production of power. Fuel Cell Technology is an up-to-date survey of the development of this technology and will be bought by researchers and graduate students in materials control and chemical engineering working at universities and institutions and researchers and technical managers in commercial companies working in fuel cell technology.

Book Biopolymer Electrolytes

Download or read book Biopolymer Electrolytes written by Sudhakar Y.N. and published by Elsevier. This book was released on 2018-06-09 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage provides the core fundamentals and applications for polyelectrolytes and their properties with a focus on biopolymer electrolytes. Increasing global energy and environmental challenges demand clean and sustainable energy sources to support the modern society. One of the feasible technologies is to use green energy and green materials in devices. Biopolymer electrolytes are one such green material and, hence, have enormous application potential in devices such as electrochemical cells and fuel cells. Features a stable of case studies throughout the book that underscore key concepts and applications Provides the core fundamentals and applications for polyelectrolytes and their properties Weaves the subject of biopolymer electrolytes across a broad range of disciplines, including chemistry, chemical engineering, materials science, environmental science, and pharmaceutical science

Book Fuel Cell Electronics Packaging

Download or read book Fuel Cell Electronics Packaging written by Ken Kuang and published by Springer Science & Business Media. This book was released on 2007-08-26 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's commercial, medical and military electronics are becoming smaller and smaller. At the same time these devices demand more power and currently this power requirement is met almost exclusively by battery power. This book includes coverage of ceramic hybrid separators for micro fuel cells and miniature fuel cells built with LTCC technology. It also covers novel fuel cells and discusses the application of fuel cell in microelectronics.

Book Direct Methanol Fuel Cells

Download or read book Direct Methanol Fuel Cells written by Electrochemical Society. Energy Technology Division and published by . This book was released on 2001 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Energy Technology, Physical Electrochemistry and Battery Divisions."

Book Electrocatalysts for Low Temperature Fuel Cells

Download or read book Electrocatalysts for Low Temperature Fuel Cells written by Thandavarayan Maiyalagan and published by John Wiley & Sons. This book was released on 2017-05-04 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.

Book Direct Alcohol Fuel Cells

    Book Details:
  • Author : Horacio R. Corti
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-02
  • ISBN : 9400777086
  • Pages : 377 pages

Download or read book Direct Alcohol Fuel Cells written by Horacio R. Corti and published by Springer Science & Business Media. This book was released on 2013-12-02 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications begins with an introductory overview of direct alcohol fuel cells (DAFC); it focuses on the main goals and challenges in the areas of materials development, performance, and commercialization. The preparation and the properties of the anodic catalysts used for the oxidation of methanol, higher alcohols, and alcohol tolerant cathodes are then described. The membranes used as proton conductors in DAFC are examined, as well as alkaline membranes, focusing on the electrical conductivity and alcohol permeability. The use of different kinds of carbon materials as catalyst supports, gas diffusion layers, and current collectors in DAFC is also discussed. State of the art of the modeling is used to estimate performance and durability. The closing chapter reviews the use of DAFC in portable equipment and mobile devices and features a detailed discussion on the mechanisms of component degradation which limits their durability. This book is written to facilitate the understanding of DAFC technology, applications, and future challenges. It is an excellent introduction for electrochemical and material engineers interested in small fuel cells as portable energy sources, scientists focused on materials science for energy production and storage, as well as policy-makers in the area of renewable energies.

Book Electrocatalysis of Direct Methanol Fuel Cells

Download or read book Electrocatalysis of Direct Methanol Fuel Cells written by Jiujun Zhang and published by John Wiley & Sons. This book was released on 2009-10-26 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture of the current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.

Book Present Trends in Fuel Cell Technology Development

Download or read book Present Trends in Fuel Cell Technology Development written by N. Rajalakshmi and published by Nova Publishers. This book was released on 2008 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors assess the technology for fuel cells in terms of processes and basic science, materials, applications and infrastructure. Each section is devoted to a particular type of fuel cell technology covering all the aspects of processes, materials, application, technology, challenges and present trends.