EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Diode pumped and Mode Locked Neodymium Lasers

Download or read book Diode pumped and Mode Locked Neodymium Lasers written by Johann Zehetner and published by . This book was released on 1992 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solid State Lasers

    Book Details:
  • Author : Walter Koechner
  • Publisher : Springer Science & Business Media
  • Release : 2006-05-29
  • ISBN : 0387217657
  • Pages : 420 pages

Download or read book Solid State Lasers written by Walter Koechner and published by Springer Science & Business Media. This book was released on 2006-05-29 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Koechner's well-known ‘bible’ on solid-state laser engineering is now available in an accessible format at the graduate level. Numerous exercises with hints for solution, new text and updated material where needed make this text very accessible.

Book Highly Efficient Diode pumped Lasers Based on In band Pumping of Nd YVO4 Crystal

Download or read book Highly Efficient Diode pumped Lasers Based on In band Pumping of Nd YVO4 Crystal written by Tanant Waritanant and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work proposed to study Neodymium-doped laser crystals as an alternative for ultrashort pulse generation with medium output power level and high efficiency. The first section of this thesis focused on the thermal effect which is the main limitation in power scaling. The results showed that the thermal lensing effect is significantly reduced with in-band pumping at 914 nm. Aside from thermal lens effect investigation, discrete wavelength tuning and dual-wavelength operations were demonstrated with intracavity birefringent plates. Mode locking operations with SESAM as saturable absorber was demonstrated under 914 nm pump wavelength for the first time with the highest efficiency to date. The output in mode-locked regime was stable and self-starting with 16 ps pulse duration which can be extended to adjacent emission lines at 1073 nm and 1085 nm. Finally, two important candidates for low quantum defect pumping, Nd:CALYO and Nd:SYSO, were identified and tested for the first time.

Book Passive Q switching of a Diode pumped Neodymium  YAG Laser

Download or read book Passive Q switching of a Diode pumped Neodymium YAG Laser written by Jeffrey Allen Morris and published by . This book was released on 1991 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diode pumped Passively Mode locked Ultrashort Pulse Solid state Lasers

Download or read book Diode pumped Passively Mode locked Ultrashort Pulse Solid state Lasers written by Arkady Major and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solid State Lasers and Applications

Download or read book Solid State Lasers and Applications written by Alphan Sennaroglu and published by CRC Press. This book was released on 2017-12-19 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of the favorable characteristics of solid-state lasers, they have become the preferred candidates for a wide range of applications in science and technology, including spectroscopy, atmospheric monitoring, micromachining, and precision metrology. Presenting the most recent developments in the field, Solid-State Lasers and Applications focuses on the design and applications of solid-state laser systems. With contributions from leading international experts, the book explores the latest research results and applications of solid-state lasers as well as various laser systems. The beginning chapters discuss current developments and applications of new solid-state gain media in different wavelength regions, including cerium-doped lasers in the ultraviolet range, ytterbium lasers near 1μm, rare-earth ion-doped lasers in the eye-safe region, and tunable Cr2+:ZnSe lasers in the mid-infrared range. The remaining chapters study specific modes of operation of solid-state laser systems, such as pulsed microchip lasers, high-power neodymium lasers, ultrafast solid-state lasers, amplification of femtosecond pulses with optical parametric amplifiers, and noise characteristics of solid-state lasers. Solid-State Lasers and Applications covers the most important aspects of the field to provide current, comprehensive coverage of solid-state lasers.

Book Nd YAG Laser

Download or read book Nd YAG Laser written by Dan C. Dumitras and published by IntechOpen. This book was released on 2012-03-09 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovered almost fifty years ago at Bell Labs (1964), the Nd:YAG laser has undergone an enormous evolution in the years, being now widely used in both basic research and technological applications. Nd:YAG Laser covers a wide range of topics, from new systems (diode pumping, short pulse generation) and components (a new semiorganic nonlinear crystal) to applications in material processing (coating, welding, polishing, drilling, processing of metallic thin films), medicine (treatment, drug administration) and other various fields (semiconductor nanotechnology, plasma spectroscopy, laser induced breakdown spectroscopy).

Book Nd YAG Laser

Download or read book Nd YAG Laser written by Dan C. Dumitras and published by IntechOpen. This book was released on 2012-03-09 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovered almost fifty years ago at Bell Labs (1964), the Nd:YAG laser has undergone an enormous evolution in the years, being now widely used in both basic research and technological applications. Nd:YAG Laser covers a wide range of topics, from new systems (diode pumping, short pulse generation) and components (a new semiorganic nonlinear crystal) to applications in material processing (coating, welding, polishing, drilling, processing of metallic thin films), medicine (treatment, drug administration) and other various fields (semiconductor nanotechnology, plasma spectroscopy, laser induced breakdown spectroscopy).

Book Mode locked Solid State Lasers Using Diode Laser Excitation

Download or read book Mode locked Solid State Lasers Using Diode Laser Excitation written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

Book 888 nm pumping of Nd YVO4 for high power TEM00 lasers

Download or read book 888 nm pumping of Nd YVO4 for high power TEM00 lasers written by Louis McDonagh and published by Cuvillier Verlag. This book was released on 2011-02-28 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last decade, neodymium-doped orthovanadate has established itself as the active material of choice for commercial solid-state lasers emitting in the 1 µm range, with output powers from several hundred milliwatts to a few tens of watts, in continuous-wave, short nanosecond Q-switched, or picosecond modelocked pulsed regimes. Its main advantages over other Nd-doped hosts such as YAG are a large stimulated-emission cross section leading to a high gain, a strong pump absorption allowing the efficient mode-matching of tightly-focused pump light, and a natural birefringence resulting in a continuously polarized output. The main drawbacks, however, are rather poor mechanical characteristics and strong thermal lensing, effectively limiting the maximum applicable pump power before excessively strong and aberrated thermal lensing prevents an efficient operation in a diffraction-limited beam, and ultimately the crystal’s fracture. Put aside the power limitation, the association of vanadate with diode end pumping allows for the realization of highly efficient and reliable laser sources based on well-known technologies, which provides an advantage in terms of manufacturability and cost-effectiveness over other high-potential technologies such as disks and fibers. This thesis introduces a novel pumping technique for Nd:YVO4 that allows for the realization of significantly higher-power laser sources with a high optical-to-optical efficiency and diffraction-limited beam quality, while keeping the benefits of a well-established technology. It consists in pumping at a wavelength of 888 nm instead of the classic 808 nm, providing a low and isotropic absorption, which results in a smooth distribution of the absorbed pump light in long crystals, effectively limiting the deleterious effects of high inversion density such as crystal end-facet bulging, high crystal temperature, aberrated thermal lensing, and upconversion. After presenting vanadate’s spectroscopic and physical characteristics, a complete analysis of the heatgenerating effects is performed, allowing for side-by-side simulations of the thermal effects in practical 808 nm and 888 nm pumped systems, and for an evaluation of their respective thermal lensing behaviors. Continuous-wave operation was thoroughly investigated, first in a multi-transversal mode oscillator to assess the maximum optical efficiency with optimum pump-mode matching and the thermal lensing characteristics. A TEM00 resonator was then developed with a single crystal and one pump diode, providing 60 W of output power with an optical efficiency of 55% and a beam quality of M2 = 1.05. This resonator was symmetrically replicated to form a periodic resonator, providing 120 W of output with the same optical efficiency and beam quality. This two-crystal configuration was then modified to an oscillator-amplifier configuration, providing a single-pass extraction efficiency of 53% and a total oscillator-amplifier output of 117 W without any beam-quality degradation. Intracavity doubling of the one and two-crystal configurations was achieved by inserting a non-critically phase-matched LiB5O3 (LBO) non-linear crystal in the resonator, providing up to 62 W of diffraction-limited green light at 532 nm with low-noise characteristics thanks to a large number of oscillating modes, thus limiting the effects of the “green problem”. A strong industrial interest resides in Q-switched lasers emitting nanosecond pulses, particularly with a high average power, high pulse repetition rate, and pulse durations of a few to several tens of nanoseconds. Achieving high-frequency and short-pulse operation both require a high gain, which explains the domination of Nd:YVO4 over lower-gain materials such as Nd:YAG or Yb:YAG. Thus, an acousto-optically Q-switched oscillator was demonstrated with 50 W output power and 28 ns pulse duration at 50 kHz. Pulse duration, however, is inversely proportional to the pulse energy, so that an increase in repetition rate inevitably results in an almost linear increase in pulse width. A cavity-dumped Q-switched oscillator was built to circumvent this limitation, the pulse length being defined by the cavity roundtrip time and the electro-optic cell switching time. It provided a constant pulse duration of 6 ns up to a repetition rate of 100 kHz and a maximum output power of 47 W. Such short pulse durations are normally available with output powers of a few watts from Q-switched lasers, and conversely Q-switched lasers of similarly high output power deliver pulses of several tens to over 100 ns in duration. There exists another strong interest in high average power quasi-cw picosecond sources, which allow for the efficient generation of green and UV radiation, or even red-green-blue for laser video projection. Passive mode locking with a semiconductor saturable absorber mirror (SESAM) is the preferred technique employed for the stable and self-starting generation of picosecond pulse trains, yet a high gain is necessary for achieving high repetition rates while avoiding the Q-switched mode-locking regime. Thus SESAM mode locking was applied to an 888 nm pumped oscillator, achieving 57 W of output power at a repetition-rate of 110 MHz and a pulse duration of 33 ps. Its output was efficiently amplified in a single pass up to 111 W without any beam quality, temporal, or spectral degradation. The high peak power of 30 kW allowed for the generation of 87 W of second harmonic at 532 nm with an efficiency of 80%, and 35 W of 355 nm third harmonic with a conversion efficiency of 33% in LBO crystals. The wide range of high-power systems demonstrated in this work illustrate the benefits of the optimized pumping of Nd:YVO4 at 888 nm, maintaining its highly-desirable characteristics such as a high gain and a polarized output while extending its power capabilities far beyond regular 808 nm pumped systems. This improvement should allow Nd:YVO4 systems to compete with high-power technologies such as disks and fibers, which often struggle in the generation of short pulses because of their low gain and strong non-linear effects, respectively.

Book Ceramic Lasers

    Book Details:
  • Author : Akio Ikesue
  • Publisher : Cambridge University Press
  • Release : 2013-05-23
  • ISBN : 110724417X
  • Pages : 459 pages

Download or read book Ceramic Lasers written by Akio Ikesue and published by Cambridge University Press. This book was released on 2013-05-23 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, ceramic materials were considered unsuitable for optics due to the numerous scattering sources, such as grain boundaries and residual pores. However, in the 1990s the technology to generate a coherent beam from ceramic materials was developed, and a highly efficient laser oscillation was realized. In the future, the technology derived from the development of the ceramic laser could be used to develop new functional passive and active optics. Co-authored by one of the pioneers of this field, the book describes the fabrication technology and theoretical characterization of ceramic material properties. It describes novel types of solid lasers and other optics using ceramic materials to demonstrate the application of ceramic gain media in the generation of coherent beams and light amplification. This is an invaluable guide for physicists, materials scientists and engineers working on laser ceramics.

Book Diode Pumped Neodymium Lasers with 910 to 950 Nm Wavelengths

Download or read book Diode Pumped Neodymium Lasers with 910 to 950 Nm Wavelengths written by Stephan Strohmaier and published by . This book was released on 2006 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lasers for Medical Applications

Download or read book Lasers for Medical Applications written by Helena Jelínková and published by Elsevier. This book was released on 2013-09-30 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lasers have a wide and growing range of applications in medicine. Lasers for Medical Applications summarises the wealth of recent research on the principles, technologies and application of lasers in diagnostics, therapy and surgery.Part one gives an overview of the use of lasers in medicine, key principles of lasers and radiation interactions with tissue. To understand the wide diversity and therefore the large possible choice of these devices for a specific diagnosis or treatment, the respective types of the laser (solid state, gas, dye, and semiconductor) are reviewed in part two. Part three describes diagnostic laser methods, for example optical coherence tomography, spectroscopy, optical biopsy, and time-resolved fluorescence polarization spectroscopy. Those methods help doctors to refine the scope of involvement of the particular body part or, for example, to specify the extent of a tumor. Part four concentrates on the therapeutic applications of laser radiation in particular branches of medicine, including ophthalmology, dermatology, cardiology, urology, gynecology, otorhinolaryngology (ORL), neurology, dentistry, orthopaedic surgery and cancer therapy, as well as laser coatings of implants. The final chapter includes the safety precautions with which the staff working with laser instruments must be familiar.With its distinguished editor and international team of contributors, this important book summarizes international achievements in the field of laser applications in medicine in the past 50 years. It provides a valuable contribution to laser medicine by outstanding experts in medicine and engineering. - Describes the interaction of laser light with tissue - Reviews every type of laser used in medicine: solid state, gas, dye and semiconductor - Describes the use of lasers for diagnostics

Book Operational Characteristics of a Passively Mode locked Neodymium Fiber Laser

Download or read book Operational Characteristics of a Passively Mode locked Neodymium Fiber Laser written by Edwin C. Owen and published by . This book was released on 1997 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Red diode pumped Cr Nd GSGG Laser

Download or read book Red diode pumped Cr Nd GSGG Laser written by Talha Yerebakan and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Solid State Lasers

Download or read book Handbook of Solid State Lasers written by B Denker and published by Elsevier. This book was released on 2013-02-20 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid-state lasers which offer multiple desirable qualities, including enhanced reliability, robustness, efficiency and wavelength diversity, are absolutely indispensable for many applications. The Handbook of solid-state lasers reviews the key materials, processes and applications of solid-state lasers across a wide range of fields.Part one begins by reviewing solid-state laser materials. Fluoride laser crystals, oxide laser ceramics, crystals and fluoride laser ceramics doped by rare earth and transition metal ions are discussed alongside neodymium, erbium and ytterbium laser glasses, and nonlinear crystals for solid-state lasers. Part two then goes on to explore solid-state laser systems and their applications, beginning with a discussion of the principles, powering and operation regimes for solid-state lasers. The use of neodymium-doped materials is considered, followed by system sizing issues with diode-pumped quasi-three level materials, erbium glass lasers, and microchip, fiber, Raman and cryogenic lasers. Laser mid-infrared systems, laser induced breakdown spectroscope and the clinical applications of surgical solid-state lasers are also explored. The use of solid-state lasers in defense programs is then reviewed, before the book concludes by presenting some environmental applications of solid-state lasers.With its distinguished editors and international team of expert contributors, the Handbook of solid-state lasers is an authoritative guide for all those involved in the design and application of this technology, including laser and materials scientists and engineers, medical and military professionals, environmental researchers, and academics working in this field. - Reviews the materials used in solid-state lasers - Explores the principles of solid-state laser systems and their applications - Considers defence and environmental applications