Download or read book Diffusions Markov Processes and Martingales Volume 1 Foundations written by L. C. G. Rogers and published by Cambridge University Press. This book was released on 2000-04-13 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.
Download or read book Diffusions Markov Processes and Martingales Volume 2 It Calculus written by L. C. G. Rogers and published by Cambridge University Press. This book was released on 2000-09-07 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This celebrated volume gives an accessible introduction to stochastic integrals, stochastic differential equations, excursion theory and the general theory of processes.
Download or read book Stochastic Calculus written by Paolo Baldi and published by Springer. This book was released on 2017-11-09 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the theory of stochastic calculus and some of its applications. It is the only textbook on the subject to include more than two hundred exercises with complete solutions. After explaining the basic elements of probability, the author introduces more advanced topics such as Brownian motion, martingales and Markov processes. The core of the book covers stochastic calculus, including stochastic differential equations, the relationship to partial differential equations, numerical methods and simulation, as well as applications of stochastic processes to finance. The final chapter provides detailed solutions to all exercises, in some cases presenting various solution techniques together with a discussion of advantages and drawbacks of the methods used. Stochastic Calculus will be particularly useful to advanced undergraduate and graduate students wishing to acquire a solid understanding of the subject through the theory and exercises. Including full mathematical statements and rigorous proofs, this book is completely self-contained and suitable for lecture courses as well as self-study.
Download or read book Multidimensional Diffusion Processes written by Daniel W. Stroock and published by Springer. This book was released on 2007-02-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book is an excellent presentation of the application of martingale theory to the theory of Markov processes, especially multidimensional diffusions. [...] This monograph can be recommended to graduate students and research workers but also to all interested in Markov processes from a more theoretical point of view." Mathematische Operationsforschung und Statistik
Download or read book L vy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.
Download or read book Stochastic Analysis and Diffusion Processes written by Gopinath Kallianpur and published by OUP Oxford. This book was released on 2014-01-09 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Itô formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.
Download or read book Brownian Motion Martingales and Stochastic Calculus written by Jean-François Le Gall and published by Springer. This book was released on 2016-04-28 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
Download or read book Brownian Motion and Stochastic Calculus written by Ioannis Karatzas and published by Springer. This book was released on 2014-03-27 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.
Download or read book Introduction to Stochastic Calculus Applied to Finance written by Damien Lamberton and published by CRC Press. This book was released on 2011-12-14 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, this concise and accessible introduction covers the probabilistic techniques required to understand the most widely used financial models. Along with additional exercises, this edition presents fully updated material on stochastic volatility models and option pricing as well as a new chapter on credit risk modeling. It contains many numerical experiments and real-world examples taken from the authors' own experiences. The book also provides all of the necessary stochastic calculus theory and implements some of the algorithms using SciLab. Key topics covered include martingales, arbitrage, option pricing, and the Black-Scholes model.
Download or read book Introduction to Stochastic Calculus with Applications written by Fima C. Klebaner and published by Imperial College Press. This book was released on 2005 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Download or read book Markov Processes from K It s Perspective AM 155 written by Daniel W. Stroock and published by Princeton University Press. This book was released on 2003-05-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô's program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Itô interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Itô's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Itô's stochastic integral calculus. In the second half, the author provides a systematic development of Itô's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Itô's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes.
Download or read book Stochastic Calculus and Differential Equations for Physics and Finance written by Joseph L. McCauley and published by Cambridge University Press. This book was released on 2013-02-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes.
Download or read book Methods of Algebraic Geometry Volume 2 written by W. V. D. Hodge and published by Cambridge University Press. This book was released on 1994-05-19 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
Download or read book The Malliavin Calculus and Related Topics written by David Nualart and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The origin of this book lies in an invitation to give a series of lectures on Malliavin calculus at the Probability Seminar of Venezuela, in April 1985. The contents of these lectures were published in Spanish in [176]. Later these notes were completed and improved in two courses on Malliavin cal culus given at the University of California at Irvine in 1986 and at Ecole Polytechnique Federale de Lausanne in 1989. The contents of these courses correspond to the material presented in Chapters 1 and 2 of this book. Chapter 3 deals with the anticipating stochastic calculus and it was de veloped from our collaboration with Moshe Zakai and Etienne Pardoux. The series of lectures given at the Eighth Chilean Winter School in Prob ability and Statistics, at Santiago de Chile, in July 1989, allowed us to write a pedagogical approach to the anticipating calculus which is the basis of Chapter 3. Chapter 4 deals with the nonlinear transformations of the Wiener measure and their applications to the study of the Markov property for solutions to stochastic differential equations with boundary conditions.
Download or read book Brownian Motion written by René L. Schilling and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-06-18 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Download or read book Semimartingale Theory and Stochastic Calculus written by Sheng-Wu He and published by Routledge. This book was released on 2019-07-09 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semimartingale Theory and Stochastic Calculus presents a systematic and detailed account of the general theory of stochastic processes, the semimartingale theory, and related stochastic calculus. The book emphasizes stochastic integration for semimartingales, characteristics of semimartingales, predictable representation properties and weak convergence of semimartingales. It also includes a concise treatment of absolute continuity and singularity, contiguity, and entire separation of measures by semimartingale approach. Two basic types of processes frequently encountered in applied probability and statistics are highlighted: processes with independent increments and marked point processes encountered frequently in applied probability and statistics. Semimartingale Theory and Stochastic Calculus is a self-contained and comprehensive book that will be valuable for research mathematicians, statisticians, engineers, and students.
Download or read book Diffusion Processes and Stochastic Calculus written by Fabrice Baudoin and published by Erich Schmidt Verlag GmbH & Co. KG. This book was released on 2014 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to present, at a graduate level and in a self-contained way, the most important aspects of the theory of continuous stochastic processes in continuous time and to introduce some of its ramifications such as the theory of semigroups, the Malliavin calculus, and the Lyons' rough paths. This book is intended for students, or even researchers, who wish to learn the basics in a concise but complete and rigorous manner. Several exercises are distributed throughout the text to test the understanding of the reader and each chapter ends with bibliographic comments aimed at those interested in exploring the materials further. Stochastic calculus was developed in the 1950s and the range of its applications is huge and still growing today. Besides being a fundamental component of modern probability theory, domains of applications include but are not limited to: mathematical finance, biology, physics, and engineering sciences. The first part of the text is devoted to the general theory of stochastic processes. The author focuses on the existence and regularity results for processes and on the theory of martingales. This allows him to introduce the Brownian motion quickly and study its most fundamental properties. The second part deals with the study of Markov processes, in particular, diffusions. The author's goal is to stress the connections between these processes and the theory of evolution semigroups. The third part deals with stochastic integrals, stochastic differential equations and Malliavin calculus. In the fourth and final part, the author presents an introduction to the very new theory of rough paths by Terry Lyons.